October 2003
Volume 3, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   October 2003
Luminance transients facilitate subsequent blue-yellow signals in individual macaque v1 neurons
Author Affiliations
  • Gregory D Horwitz
    The Salk Institute, HHWF; USA
  • E.J. Chichilnisky
    The Salk Institute, McKnight Scholars Award; USA
  • Thomas D Albright
    The Salk Institute, HHMI; USA
Journal of Vision October 2003, Vol.3, 139. doi:10.1167/3.9.139
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Gregory D Horwitz, E.J. Chichilnisky, Thomas D Albright; Luminance transients facilitate subsequent blue-yellow signals in individual macaque v1 neurons. Journal of Vision 2003;3(9):139. doi: 10.1167/3.9.139.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

The responses of some V1 neurons change nearly linearly with cone contrast whereas other neurons respond non-linearly. We studied color-opponent V1 neurons using a novel reverse correlation procedure that permits identification and characterization of a wide class of non-linear neuron. Previously we reported that the responses of blue-yellow neurons were non-linear and could be modeled as the product of a full-wave rectified luminance signal and a half-wave rectified blue-yellow signal (Horwitz et al. 2002 Soc. Neurosci. Abs. 720.8). Here we consider the temporal relationship between these luminance and blue-yellow signals.

V1 neurons in awake, fixating monkeys were stimulated with randomly flickering colored checkerboard patterns. Stimuli preceding spikes were analyzed to assess stimulus selectivity. The average stimulus preceding a spike in blue-yellow neurons was, by definition, an increase in blue and a decrease in yellow. Principal components analysis on the ensemble of spike-triggered stimuli revealed a rectified luminance signal. Joint consideration of both response properties was consistent with a multiplicative interaction between luminance and blue-yellow inputs.

The luminance signal reached its maximum ∼10 ms before the blue-yellow signal. These results are consistent with the idea that luminance transients increase the response gain of blue-yellow V1 neurons after a brief delay. This enhancement may be related to psychophysical demonstrations that luminance transients facilitate color vision.

Horwitz, G. D., Chichilnisky, E., Albright, T. D.(2003). Luminance transients facilitate subsequent blue-yellow signals in individual macaque v1 neurons [Abstract]. Journal of Vision, 3( 9): 139, 139a, http://journalofvision.org/3/9/139/, doi:10.1167/3.9.139. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×