October 2003
Volume 3, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   October 2003
The time course of localization errors for repeatedly flashing stimuli through a saccade
Author Affiliations
  • Junji Watanabe
    Graduate School of Information Science and Technology, The University of Tokyo, Japan
  • Taro Maeda
    NTT Communication Science Laboratories, Japan
  • Susumu Tachi
    Graduate School of Information Science and Technology, The University of Tokyo, Japan
Journal of Vision October 2003, Vol.3, 695. doi:10.1167/3.9.695
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Junji Watanabe, Taro Maeda, Susumu Tachi; The time course of localization errors for repeatedly flashing stimuli through a saccade. Journal of Vision 2003;3(9):695. doi: 10.1167/3.9.695.

      Download citation file:


      © 2016 Association for Research in Vision and Ophthalmology.

      ×
  • Supplements
Abstract

When a repeatedly flashing stimulus is presented during a saccade, we perceive a dotted line called “Phantom Array” (P.A.). Thanks to this phenomenon, by arranging LEDs (light emitting diodes) in a vertical line and flashing them repeatedly, we can see a 2D image when we make a saccade across the LEDs. Though the relationship between eye movements and perception of P.A. must be investigated in order to know how we perceive a 2D image during a saccade, there are few researches on the time course of the P.A. So we investigated the time course of the perceivable P.A. before, during, and after a saccade. We found that the P.A. starts to move as our eyes begin to move and stops as begin to stop. So, the time when we can perceive the P.A. is same as duration of a saccade. This result differs from the expected time course of localization errors for briefly flashing stimuli. The localization errors for briefly flashing stimuli begin approximately 100ms before the saccade onset, then end approximately 100ms after the saccade offset. From our research, it is assumed that before and after a saccade we localize stimuli using relative position information on the retina, and during a saccade, as the retinal image is displaced rapidly, we localize stimuli by comparing the retinal images with eye position information. The perceptional difference between a repeatedly flashing and briefly flashing stimulus comes from whether we can use relative position information on the retina before and after saccades.

Watanabe, J., Maeda, T., Tachi, S.(2003). The time course of localization errors for repeatedly flashing stimuli through a saccade [Abstract]. Journal of Vision, 3( 9): 695, 695a, http://journalofvision.org/3/9/695/, doi:10.1167/3.9.695. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×