October 2003
Volume 3, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   October 2003
Saccadic decision-rate distributions reveal competition process
Author Affiliations
  • Jaap A. Beintema
    Functional Neurobiology, Utrecht University, the Netherlands
  • Editha L. Loon
    School of Psychology, University of Nottingham, United Kingdom
  • Ignace Th. C. Hooge
    Psychonomy, Utrecht University, the Netherlands
  • Albert V. Berg
    Functional Neurobiology, Utrecht University, the Netherlands
Journal of Vision October 2003, Vol.3, 72. doi:10.1167/3.9.72
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Jaap A. Beintema, Editha L. Loon, Ignace Th. C. Hooge, Albert V. Berg; Saccadic decision-rate distributions reveal competition process. Journal of Vision 2003;3(9):72. doi: 10.1167/3.9.72.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Reddi & Carpenter (2000) proposed that the saccadic latency reflects the reciprocal rate of visual processing for reaching a decision threshold. They observed that the rates (=reciprocal latencies) of 1st saccades were distributed normally. This observation does not apply to saccade sequences, because for visual search tasks van Loon et al. (2002) found that the rate distributions for 2nd and later saccades are skewed, much like Gamma distributions. Gamma distributions arise when many independent stochastic processes contribute to the decision, suggesting the skewing results from a reduced number of processes in later saccades. However, skewed distributions can also be explained by a competition process that pits two rate signals against each other (van den Berg, NS 2001). Such extended decision model, with for instance ‘make saccade’ vs ‘keep fixating’ decision signals, would enable the saccade sequence to stop. Interestingly, the model predicts beta distributions, which typically have more tail at high rates than gamma distributions. Furthermore, the beta function's two parameters represent the thresholds of the two competing signals. Here, we investigated the evidence for a beta rate distribution and for systematic variations in its parameters. Subjects were to saccade as quickly as possible towards a target that deviated in line orientation from distractors consisting of lines arranged in a radial pattern. The number of distractors (Exp. I) or the chance of the target appearing at the fixation point (Exp. II) was varied. In both experiments, the rate distributions for second and later saccades were significantly better fit by beta than by gamma functions. Moreover, significant changes in the beta fit parameters were found in Exp. I for the later saccades, with threshold changes as predicted by the competition model. Our results are consistent with a competition between two decision signals underlying the timing of saccades.

Beintema, J. A., Van  Loon, E. L., Hooge, I. T. C., Van den  Berg, A. V.(2003). Saccadic decision-rate distributions reveal competition process [Abstract]. Journal of Vision, 3( 9): 72, 72a, http://journalofvision.org/3/9/72/, doi:10.1167/3.9.72. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×