June 2004
Volume 4, Issue 8
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2004
Basic level categorization and shape processing — an fMRI study
Author Affiliations
  • Markus Graf
    Max Planck Institute for Biological Cybernetics, Tübingen, Germany
  • Christoph Dahl
    Max Planck Institute for Biological Cybernetics, Tübingen, Germany
  • Michael Erb
    Section Exp. MR of the CNS, Dept. of Neuroradiology, University of Tübingen, Germany
  • Wolfgang Grodd
    Section Exp. MR of the CNS, Dept. of Neuroradiology, University of Tübingen, Germany
  • Heinrich H. Buelthoff
    Max Planck Institute for Biological Cybernetics, Tübingen, Germany
Journal of Vision August 2004, Vol.4, 511. doi:10.1167/4.8.511
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Markus Graf, Christoph Dahl, Michael Erb, Wolfgang Grodd, Heinrich H. Buelthoff; Basic level categorization and shape processing — an fMRI study. Journal of Vision 2004;4(8):511. doi: 10.1167/4.8.511.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

How is basic level categorization achieved in the human brain? Behavioral studies showed that categorization performance depends systematically on the amount of morph transformation (e.g. Graf, 2002). These results may be due to time-consuming compensation processes (deformable template matching). If deforming (i.e. spatial) compensation processes are involved, then categorization might not only comprise the ventral visual pathway, as generally assumed, but also the dorsal stream. Objects from 25 common basic level categories were generated by morphing between two category members (using 3ds max). In the categorization task, subjects had to decide as fast as possible whether two sequentially presented objects belonged to the same category. The morph distance between category members was varied (event-related design). In a second task, the same observers perceived intact morphing sequences, scrambled sequences, and static presentations of different morphs (block design). In the categorization task, response latencies increased with increasing morph distance between exemplars. Correspondingly, the BOLD signal increased with increasing morph distance in the lateral occipital complex, the superior parietal and the frontal cortices. Control analyses showed that this pattern of activation cannot be reduced to task difficulty, or increasing shape dissimilarity. In the second task we found parietal activation for the contrast between intact vs. scrambled morphing sequences which was close to the dorsal activation in the categorization task, but not identical. The results suggest that basic level categorization relies on a network of ventral, dorsal and frontal areas. The activation within this network depends systematically on the amount of shape transformation. The dorsal activation seems related to compensation processes in parietal cortex, i.e. spatial (deforming) transformation processes. These findings are in accordance with an alignment approach of categorization.

Graf, M., Dahl, C., Erb, M., Grodd, W., Buelthoff, H. H.(2004). Basic level categorization and shape processing — an fMRI study [Abstract]. Journal of Vision, 4( 8): 511, 511a, http://journalofvision.org/4/8/511/, doi:10.1167/4.8.511. [CrossRef]
Footnotes
 This work was supported by the Max Planck Society, by the European Commission (IST 2000-29375 COGVIS), and by the Deutsche Forschungsgemeinschaft (DFG) grant TH 812/1-1.
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×