September 2005
Volume 5, Issue 8
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2005
Distorting visual space without motion signal
Author Affiliations
  • Junghyun Park
    California Institute of Technology, USA
  • Shinsuke Shimojo
    California Institute of Technology, USA, and NTT Communication Science Laboratory, Japan
  • John Schlag
    University of California at Los Angeles, USA
Journal of Vision September 2005, Vol.5, 201. doi:10.1167/5.8.201
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Junghyun Park, Shinsuke Shimojo, John Schlag; Distorting visual space without motion signal. Journal of Vision 2005;5(8):201. doi: 10.1167/5.8.201.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Studies have shown that the perceived position of flashed objects is distorted in the presence of stimulus or eye motion: e.g., flash-lag effects (Nijhawan 1994; Schlag et al. 2000), presaccadic mislocalization and compression (Cai et al. 1997; Burr et al. 1997), and position capture (Whitney & Cavanagh 2000). Here we demonstrate that, even in the absence of such motions, the perceived position of flashed objects can be systematically distorted depending on the timing of their presentation with respect to other objects in visual field. When a target object is flashed at the offset of another object (here called ‘inducer’), the perceived position of the target object shifts toward the center of gaze, regardless of the number of inducers and their location.

Observers judged the relative alignment of two vertical lines separated by a short gap. One line was continuously present at 8 deg right to the central fixation point, the other was briefly flashed at least 1s after the onset and 1s before the offset of the continuous line. At various times around the line flash, four small disks grouped around the lines were presented: either 1) continuously, 2) from the trial onset to line flash, 3) from the line flash to the end of the trial, or 4) flashed simultaneously with the line.

We found that when the line was flashed at the extinction of the disks (i.e., conditions 2 & 4), the perceived position of the line shifted toward the center of gaze. The perceived shift was several times larger than the baseline tendency of compression (Mateeff & Gourevich 1983) obtained in control trials with no disk. In other experiments, the stimulus offset asynchrony (SOA) between the flashed line and disks, the number of disks and their location relative to the line were varied. The perceived shift was strongest at SOA = 0ms and disappeared with SOA > 100ms. Although the perceived shift was affected to some extent by the spatial configuration of the disks, its direction was always toward the center of gaze.

Park, J. Shimojo, S. Schlag, J. (2005). Distorting visual space without motion signal [Abstract]. Journal of Vision, 5(8):201, 201a, http://journalofvision.org/5/8/201/, doi:10.1167/5.8.201. [CrossRef]
Footnotes
 Supported by USPHS grant EY05879
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×