June 2006
Volume 6, Issue 6
Free
Vision Sciences Society Annual Meeting Abstract  |   June 2006
Cross-orientation suppression is proportional to the square-root of speed for flickering Gabor stimuli
Journal of Vision June 2006, Vol.6, 200. doi:10.1167/6.6.200
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Tim S. Meese, David J. Holmes; Cross-orientation suppression is proportional to the square-root of speed for flickering Gabor stimuli. Journal of Vision 2006;6(6):200. doi: 10.1167/6.6.200.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

A property of many striate cells is cross-orientation suppression (XOS): the response to an optimal grating is suppressed by an orthogonal and superimposed mask. Models of this nonlinear phenomenon have been motivated by physiological constraints (pre-synaptic depression), engineering solutions for components with poor dynamic range (contrast normalization) and fundamental coding strategies for natural images (redundancy reduction). These accounts often make tacit assumptions about the scale invariance of XOS, but this has not been investigated. We addressed this by measuring psychophysical masking functions for flickering horizontal Gabor stimuli (full-width at half-height of 1.67 cycles) over wide ranges of spatio-temporal frequency (SF=0.5–8c/deg; TF=0.5–15Hz) and mask contrast (0–45%). Gabor masks were identical to the target, but with orthogonal orientation. We found substantial levels of XOS (∼12dB) that predominated at fast speeds (where speed=TF/SF) and small levels (∼3dB) of cross-orientation facilitation (XOF) that predominated at slow speeds. Little or no XOS or XOF were found at slow and fast speeds respectively. The data were normalized by detection threshold, and well fit by a functional model of contrast gain control. In this model, the suppressive weight of XOS (w) was a free parameter for each of 15 masking functions, and the modulatory weight of XOF was constant (=16 DF for 90 points). A power function (exponent=0.48) accounted for 89% of the variance in a plot of w against speed. These results (i) provide new constraints for general models of suppression and (ii) suggest that the process underpinning XOF is widespread, but often hidden by suppression.

Meese, T. S. Holmes, D. J. (2006). Cross-orientation suppression is proportional to the square-root of speed for flickering Gabor stimuli [Abstract]. Journal of Vision, 6(6):200, 200a, http://journalofvision.org/6/6/200/, doi:10.1167/6.6.200. [CrossRef]
Footnotes
 This work was supported by a grant from the Engineering and Physical Sciences Research Council (GR/S74515/01)
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×