June 2007
Volume 7, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   June 2007
Cone-specific gain changes compensate color appearance for differences in spectral sensitivity
Author Affiliations
  • Deanne Leonard
    Psychology, University of Nevada, Reno
  • Michael Webster
    Psychology, University of Nevada, Reno
Journal of Vision June 2007, Vol.7, 790. doi:10.1167/7.9.790
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Deanne Leonard, Michael Webster; Cone-specific gain changes compensate color appearance for differences in spectral sensitivity. Journal of Vision 2007;7(9):790. doi: 10.1167/7.9.790.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Color appearance shows complete compensation for age-related changes in lens pigment density (e.g. Werner and Schefrin JOSA 1993) and for eccentricity-dependent changes in macular pigment density (Beer et al. JOV 2005). However, the mechanisms underlying this compensation are not known. We examined whether the adjustment for macular pigment reflects differences in the intrinsic sensitivity of the cones (or cone-specific pathways), by measuring how achromatic settings are biased by chromatic adaptation in the fovea and periphery. The stimulus was a 20 cd/m2 circular field shown in an otherwise dark room. The field subtended 2 deg and was presented in the fovea or at an eccentricity of 8 deg. Subjects adjusted the chromaticity of the field until it appeared a neutral white, and settings were repeated either after dark adapting or during adaptation to different chromaticities in the field that varied S cone excitation over a large range spanning the nominal white point. Dark-adapted white settings at the two loci were similar, despite the large differences in spectral sensitivity predicted by differences in macular screening. Adapting to a high S-cone, purple field causes the test to appear yellowish green and thus shifts the white settings toward purple, while adapting to a low S-cone color induces the opposite aftereffects. The intermediate adapting S level that does not bias the white settings thus defines the neutral, baseline sensitivity of the chromatic mechanisms at the sites affected by the adaptation. These adaptation effects were again similar at the two eccentricities and had neutral points close to the dark adapted white point. Since the chromatic adaptation largely reflects cone-specific sensitivity changes, our results suggest that much of the neural compensation for color appearance may happen at an early cone-specific stage, perhaps by matching the intrinsic gains of the cones to the long-term history of stimulus exposure.

Leonard, D. Webster, M. (2007). Cone-specific gain changes compensate color appearance for differences in spectral sensitivity [Abstract]. Journal of Vision, 7(9):790, 790a, http://journalofvision.org/7/9/790/, doi:10.1167/7.9.790. [CrossRef]
Footnotes
 supported by EY10834
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×