September 2011
Volume 11, Issue 11
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2011
Specificity of learning in acquired bias for 3D rotation
Author Affiliations
  • Baptiste Caziot
    Graduate Center for Vision Research, SUNY College of Optometry and SUNY Eye Institute, USA
  • Benjamin T. Backus
    Graduate Center for Vision Research, SUNY College of Optometry and SUNY Eye Institute, USA
Journal of Vision September 2011, Vol.11, 1032. doi:10.1167/11.11.1032
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Baptiste Caziot, Benjamin T. Backus; Specificity of learning in acquired bias for 3D rotation. Journal of Vision 2011;11(11):1032. doi: 10.1167/11.11.1032.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Cue recruitment studies (e.g. Haijang et al., 2006 PNAS) show that the visual system can be trained to disambiguate an ambiguous 3D rotation, such as the case of a movie of a rotating Necker (wire frame) cube. This acquired bias is specific to retinal location (Harrison & Backus, 2010 J Vis) and lasts at least four weeks. Resistance to reverse training is greater after viewing ambiguous stimuli without disparity, than disambiguated stimuli with disparity (Harrison & Backus, 2010 Vis Res; van Dam & Ernst, 2010 J Vis). This resistance was attributed to greater learning from “difficult to interpret” ambiguous stimuli. An alternative interpretation is that the ambiguous test stimuli used during reverse training resembled the ambiguous stimuli during initial training. Here we used stimuli that contained binocular disparity during reverse training, and the question was whether initial training would be more effective to block reverse learning. On Day 1, we measured participants' sensitivity to disparity using a staircase procedure. On Day 2, participants in Group A saw mostly non-disambiguated trials, the appearance of which was controlled by a few disambiguated trials (Harrison & Backus, 2010 Vis Res), and participants in Group B saw stimuli that contained disparity (1, 2, and 3 times threshold as measured on Day 1). On Day 3 both groups received reverse training on stimuli that contained disparity. If learning was specific to stimulus type, then resistance to retraining would be greater in Group B. If “difficult” or ambiguous stimuli simply cause stronger learning (or more resistant bias), then resistance to retraining would be greater in Group A. Results from four observers suggest that the second interpretation is correct, and that non-disambiguated stimuli do cause greater learning than disambiguated stimuli.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×