September 2011
Volume 11, Issue 11
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2011
Alignment judgements: Greater precision within than between cortical maps
Author Affiliations
  • Rachel Owens
    School of Psychology, University of Western Australia, Australia
  • J. Edwin Dickinson
    School of Psychology, University of Western Australia, Australia
  • David. R. Badcock
    School of Psychology, University of Western Australia, Australia
Journal of Vision September 2011, Vol.11, 1182. doi:10.1167/11.11.1182
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Rachel Owens, J. Edwin Dickinson, David. R. Badcock; Alignment judgements: Greater precision within than between cortical maps. Journal of Vision 2011;11(11):1182. doi: 10.1167/11.11.1182.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

The visual cortex is hierarchically organised so that local features are processed in early areas with increasingly complex operations occurring with each subsequent level. Many of these early- to intermediate-stages are represented retinotopically (Wandell, Brewer, & Dougherty, 2005). Within the regions (i.e. V1) there are often populations of neurons which cluster together in terms of their tuning. When the system has to compare information from different populations of neurons (either those within a cortical region or those between regions) this may increase the chance of error affecting the precision of perceptual judgements. The current study investigated the precision of alignment discrimination between forms thought to be processed in separate retinotopic maps, as well as between forms thought to be processed by separate populations of neurons within a map. This precision was compared to that found when alignment judgements were made between forms processed in the same retinotopic map and processed by the same population of neurons, respectively. Our inter-map test used locally detected luminance-defined dots and the centres of radial frequency patterns (which require global processing) while the intra-map test used ‘low’ and ‘high’ spatial frequency Gabor patches. We found there was indeed extra positional error in conditions where an inter-map judgement had to be made. This error could not be accounted for by summing the positional error associated with each individual form within the stimulus set. However, extra error was not found when observers made an intra-map judgement. We conclude that a precision cost may be introduced to alignment judgements when position information is passed between - but not within - cortical regions.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×