September 2011
Volume 11, Issue 11
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2011
Predicting the conscious experience of other people
Author Affiliations
  • Kristian Sandberg
    Cognitive Neuroscience Research Unit, Aarhus University Hospital, USA
  • Bahador Bahrami
    Institute of Cognitive Neuroscience, University College London, USA
  • Ryota Kanai
    Institute of Cognitive Neuroscience, University College London, USA
  • Gareth Barnes
    Wellcome Trust Centre for Neuroimaging, University College London, USA
  • Morten Overgaard
    Cognitive Neuroscience Research Unit, Aarhus University Hospital, USA
  • Geraint Rees
    Institute of Cognitive Neuroscience, University College London, USA
    Wellcome Trust Centre for Neuroimaging, University College London, USA
Journal of Vision September 2011, Vol.11, 300. doi:10.1167/11.11.300
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Kristian Sandberg, Bahador Bahrami, Ryota Kanai, Gareth Barnes, Morten Overgaard, Geraint Rees; Predicting the conscious experience of other people. Journal of Vision 2011;11(11):300. doi: 10.1167/11.11.300.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract
 

There has been considerable interest recently in using multivariate decoding techniques applied to functional MRI signals in order to decode the contents of a person's consciousness. The use of such signals has inherent disadvantages due to the delay of the hemodynamic response. Moreover to date it has not been shown possible to generalize the decoding of brain signals from one individual to another. This limits the potential utility of such approaches. Here we used a different approach that circumvented these difficulties by using magnetoencephalographic (MEG) signals to decode the contents of consciousness, and to test whether such correlates generalized reliably across individuals. We used a 274 channel MEG system to record signals from 8 healthy participants while they viewed an intermittently presented binocular rivalry stimulus consisting of a face and a grating. Using a leave-one-out cross-validation procedure, we trained support vector machines on the MEG signals to decode the rivalry percept. Decoding was significantly better than chance in all participants. We then tested whether a support vector machine trained on MEG signals from one participant could successfully decode the rivalry percept of another. Again, decoding accuracy was significantly better than chance. These findings demonstrate that it is possible to decode perception independently of physical stimulation using MEG signals in near real time in a way that generalizes across individuals. Our findings indicate that there may be universal neural correlates of consciousness, and mark a potentially important step in the design of devices for decoding the contents of consciousness in individuals unable to report their experience behaviorally.

 
This work was supported by the Wellcome Trust (GR), the MindBridge project, the European Commission under the Sixth Framework Programme (BB), and the European Research Council (KS and MO). 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×