August 2012
Volume 12, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2012
The role of presentation and depth singletons in the prioritization of approaching but not receding motion in depth
Author Affiliations
  • Nonie Finlayson
    School of Psychology, The University of Queensland, Brisbane, Australia
  • Roger Remington
    School of Psychology, The University of Queensland, Brisbane, Australia
  • Philip Grove
    School of Psychology, The University of Queensland, Brisbane, Australia
Journal of Vision August 2012, Vol.12, 238. doi:10.1167/12.9.238
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Nonie Finlayson, Roger Remington, Philip Grove; The role of presentation and depth singletons in the prioritization of approaching but not receding motion in depth. Journal of Vision 2012;12(9):238. doi: 10.1167/12.9.238.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

When examining motion in depth and the attentional system, previous studies have reported conflicting results, with some finding attentional prioritization for only approaching motion (Franconeri & Simons, 2003), and others reporting capture for both approaching and receding motion in depth (Skarratt, Cole, & Gellatly, 2009). This discrepancy could be due to at least two factors: 1) differences in the way in which motion in depth was simulated, or 2) a confound between motion in depth and the initial unique depth of the moving object relative to the other distractors. We addressed these factors in two experiments. We used a search paradigm comparing the response time to find a target when it did or did not spatially coincide with the endpoint of an object’s approaching or receding motion. In Experiment 1 we simulated motion in depth using size scaling, binocular disparity, or a combination of the two. The pattern of response times varied with the method used, indicating that the method used to simulate motion in depth is an important factor for this effect. Experiment 2 controlled for the initial depth of the moving target by comparing a condition with the depth singleton removed by spreading items over two depth planes, to a condition with a single depth plane and a depth singleton. We observed shallower search slopes for targets coinciding with an approaching item than a static item in both conditions, as well as speeded response times to approaching motion compared to receding or static targets. Slopes for receding motion were shallower than for static targets only when the moving stimulus constituted a depth singleton. We conclude that low level visual processing of approaching motion is more efficient than for receding motion, and this rapid low level visual processing can increase the salience of approaching motion.

Meeting abstract presented at VSS 2012

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×