August 2012
Volume 12, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2012
A model of three-dimensional biological motion perception from two-dimensional views
Author Affiliations
  • Stefanie Theusner
    Institute of Psychology, University of Münster\nOtto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Münster
  • Marc H. E. de Lussanet
    Institute of Psychology, University of Münster\nOtto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Münster
  • Markus Lappe
    Institute of Psychology, University of Münster\nOtto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Münster
Journal of Vision August 2012, Vol.12, 650. doi:10.1167/12.9.650
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Stefanie Theusner, Marc H. E. de Lussanet, Markus Lappe; A model of three-dimensional biological motion perception from two-dimensional views. Journal of Vision 2012;12(9):650. doi: 10.1167/12.9.650.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Most studies of biological motion perception have used walkers seen in profile from the side. However, recent psychophysical and electrophysiological investigations have found that recognition ability is different for different views (frontal, half-profile or profile), and that body posture sensitive cells in the ventral visual system are tuned to the facing-in-depth of the body. We present a neural model of three-dimensional biological motion perception from two-dimensional views, based on earlier modeling work with profile views. The model consists of posture-sensitive cells that each represent a 2D view of particular body posture. Template matching between the stimulus and the posture cells induces a temporal variation of activity in the body posture representation tuned for a particular view. Temporal filters then create a representation of body motion. The model is tested in comparison to psychophysical and electrophysiological data. It reproduces the dependence of recognition ability on view orientation, and certain ambiguities both in perception and in the neuronal tuning functions for body views in primate STS. Because the model uses primarily body form information, along with its temporal evolution, it is helpful in explaining how much of the specificities of 3D biological motion perception rely on the geometrical properties of the stimulus.

Meeting abstract presented at VSS 2012

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×