August 2012
Volume 12, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2012
The role of parietal visual cortex in perceptual transitions during bistable perception
Author Affiliations
  • Hamed Bahmani
    Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany\nBernstein Center for Computational Neuroscience, 72076 Tübingen, Germany
  • Nikos K. Logothetis
    Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany\nBernstein Center for Computational Neuroscience, 72076 Tübingen, Germany
  • Georgios A. Keliris
    Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany\nBernstein Center for Computational Neuroscience, 72076 Tübingen, Germany
Journal of Vision August 2012, Vol.12, 683. doi:10.1167/12.9.683
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Hamed Bahmani, Nikos K. Logothetis, Georgios A. Keliris; The role of parietal visual cortex in perceptual transitions during bistable perception. Journal of Vision 2012;12(9):683. doi: 10.1167/12.9.683.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Several imaging studies in humans have shown the involvement of a frontoparietal network of cortical areas in perceptual transitions during bistable perception. To investigate further the possible role of parietal visual areas in perceptual alternations, we recorded extracellular neural activity in the lateral intraparietal area (LIP) of the rhesus macaque. The subject was initially presented with congruent patterns to the two eyes. Then the stimulus was switched for either one or both eyes (binocular flash suppression versus physical alternation), both resulting in perception of the newly presented stimulus. The recorded cells typically showed an initial burst of activity at stimulus onsets as well as stimulus switches. In contrast to previous reports by a number of fMRI studies, we found strong transient activity during physical alternations at the single cell level. This signal was also present during binocular flash suppression but to a lesser extent. Importantly, the amplitude of the signal dropped substantially in control conditions where physical changes were introduced in the stimuli but did not induce concomitant changes in perception. The transient response of the recorded neurons was followed by a tonic response which exhibited independent dynamics. Interestingly, this sustained activity was significantly lower during incongruent versus congruent stimulation. We conjecture that areas at the high end of the dorsal pathway might be involved in multistable perception in a different way in comparison with feature and object selective areas of the ventral pathway. The transient signal recorded in LIP neurons during perceptual transitions could potentially trigger reorganization of activity in constellations of feature selective neurons in the ventral pathway. In addition, the suppression of the sustained activity in LIP during incongruent stimulation may reflect inhibitory processes involved in the resolution of conflict between the two stimuli or indicate a failure to bind the sensory input into a coherent percept.

Meeting abstract presented at VSS 2012

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×