July 2013
Volume 13, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   July 2013
The Statistical Saliency Model can choose colors for items on map displays
Author Affiliations
  • Joshua Shive
    Department of Psychology, College of Education, Tennessee State University
  • Sharra Rosichan
    Department of Psychology, College of Behavioral and Health Sciences, Middle Tennessee State University
  • Sherika Austin
    Department of Psychology, College of Education, Tennessee State University
  • Christena Wade
    Department of Psychology, College of Education, Tennessee State University
Journal of Vision July 2013, Vol.13, 1247. doi:10.1167/13.9.1247
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Joshua Shive, Sharra Rosichan, Sherika Austin, Christena Wade; The Statistical Saliency Model can choose colors for items on map displays. Journal of Vision 2013;13(9):1247. doi: 10.1167/13.9.1247.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

When a display is cluttered, drawing attention to specific display items may be difficult. Our current project examines how to choose distinctive (i.e., salient) colors for items on high-clutter and low-clutter maps using predictions of a model of visual search. Thirty observers rated the degree of clutter on each of 150 MapQuest maps containing symbols representing colored location pushpins. We calculated the average clutter rating for each map and identified 20 high-clutter maps and 20 low-clutter maps. Next, the Statistical Saliency Model (Rosenholtz et al., 2007) was used to choose colors for pushpins on each of the 20 high-clutter and 20 low-clutter maps. For each map, we calculated the model-predicted salience of a pushpin added to the map, given different potential pushpin colors (the 267 colors in the ISCC-NBS standard color system). We chose the color with maximum predicted salience. For comparison, we also created maps where the pushpins were assigned the color with minimum predicted salience or median predicted salience. We followed this procedure for all 40 maps, resulting in a set of 120 maps. We validated the color assignments in a visual search experiment where observers were shown a pushpin and then asked to search for it on a map. Maximum predicted salience pushpins were found faster than pushpins of other colors on both high- and low-clutter maps, indicating that our approach can choose colors for display items to facilitate search.

Meeting abstract presented at VSS 2013

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×