December 2013
Volume 13, Issue 15
Free
OSA Fall Vision Meeting Abstract  |   October 2013
Circadian clock and dopamine control of rod photoreceptor electrical coupling in mouse retina
Journal of Vision October 2013, Vol.13, P7. doi:10.1167/13.15.42
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Christophe Ribelayga, Nange Jin; Circadian clock and dopamine control of rod photoreceptor electrical coupling in mouse retina. Journal of Vision 2013;13(15):P7. doi: 10.1167/13.15.42.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Rod photoreceptors play a critical role for vision under dim light by providing the reliable detection and transmission of single photons. Phototransduction current in the rod outer segment and photocurrent from electrically coupled neighboring rods are central processes that shape the rod photovoltage in vertebrates in general. However, in mammals, the regulation and contribution of electrical coupling to the rod light response have remained unclear and controversial. In addition, the limited data available reflects the experimental difficulty to electrically access the inside of the mammalian photoreceptor because of its small size.

We have developed a patch-clamp method to record the light-evoked responses of single photoreceptors in the isolated intact neural mouse retina maintained by superfusion. We found that under dark-adapted conditions, during both daytime and nighttime, rod voltage responses to dim flashes of light were consistent with the quantal nature of light and the rod ability to detect single photons. While the rod light responses were slower and smaller in amplitude at night, they were more reliable as compared to the day, indicating an increase in rod electrical coupling at night. Tracer coupling measurements and pharmacological manipulations provided further evidence that rods were electrically isolated during the day and coupled at night, and that the temporal variation in rod coupling required dopamine and D2-like receptors. We propose that the daily activation of D2-like receptors, driven by the circadian rhythm in retinal dopamine, in turn controls electrical coupling of rods.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×