August 2014
Volume 14, Issue 10
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2014
Dynamic neural encoding of component directions of transparently moving stimuli in cortical area MT
Author Affiliations
  • Xin Huang
    Department of Neuroscience, Physiology Graduate Training Program, University of Wisconsin - Madison
  • Jianbo Xiao
    Department of Neuroscience, Physiology Graduate Training Program, University of Wisconsin - Madison
Journal of Vision August 2014, Vol.14, 289. doi:10.1167/14.10.289
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Xin Huang, Jianbo Xiao; Dynamic neural encoding of component directions of transparently moving stimuli in cortical area MT . Journal of Vision 2014;14(10):289. doi: 10.1167/14.10.289.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

The responses of cortical neurons elicited by two perceptually separable stimuli have been shown to follow the average of the responses elicited by the constituent stimuli. Such a scheme poses a challenge in segmenting two stimuli that differ only slightly, because averaging essentially takes away the information regarding the stimulus components. Here we investigate how spatially-overlapping stimuli moving transparently in slightly different directions are encoded in the middle-temporal (MT) cortex of macaque monkeys. Visual stimuli were two overlapping random-dot patches moving simultaneously within a static aperture in two directions separated by 60째. We recorded from 155 MT neurons in two monkeys as they performed a fixation task. Based on the response averaging, the predicted tuning curve of a MT neuron to our bi-directional stimuli typically had a single peak, located when the vector-averaged direction of the stimuli was at the neuron's preferred direction (PD). However, we found that the tuning curves of half of the neurons deviated from the averaging prediction. About 1/3 of the neurons showed tuning curves that were biased toward one of the component directions. The tuning curve averaged across these neurons had a single peak located when one of the component directions was near the PD. For another 1/7 of the neurons, they showed two separate peaks in their tuning curves, which peaked when either one of the component directions was near the PD. Interestingly, these direction tuning curves evolved gradually over time. During the initial response period of ~50 ms, the tuning curve was symmetric with a single peak. Over a period of an additional 50 ms, the response tuning was either biased toward one component direction, or split into two peaks. These nonlinear response properties of MT neurons may manifest a dynamic solution of segmenting slightly different component directions of transparently moving stimuli.

Meeting abstract presented at VSS 2014

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×