August 2004
Volume 4, Issue 9
Free
Research Article  |   August 2004
Perception of color and material properties in complex scenes
Author Affiliations
Journal of Vision August 2004, Vol.4, i. doi:10.1167/4.9.i
  • Views
  • PDF
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      David H. Brainard, Laurence T. Maloney; Perception of color and material properties in complex scenes. Journal of Vision 2004;4(9):i. doi: 10.1167/4.9.i.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Introduction
How do human observers estimate the location, form, and color of objects? Accurate estimation is challenging because the light arriving at the eyes depends not only on object properties, but also on the spectra and spatial layout of the light sources (Nassau, 1983; Foley et al., 1990). How well the visual system separates illuminant and object properties to achieve a stable representation has traditionally been studied under the rubric of color and lightness constancy. Most previous work used very simple stimuli, typically a few diffusely illuminated surfaces arranged perpendicular to the line of sight. Over the past several years, however, there has been an evident increase of interest in expanding the conceptualization of this area to incorporate effects that emerge only for complex, typically three-dimensional, scenes. The current issue features papers that represent various manifestations of this interest. 
One line of research investigates how the three-dimensional layout of a scene affects the perception of lightness and color. Although the current work has long-standing antecedents (e.g. Mach, 1886/1959; Hochberg and Beck, 1954; Gilchrist, 1980), methodological advances in i) experimentation with real illuminated objects (e.g. Brainard et. al, 1987; Rutherford and Brainard, 2002; Ripamonti et al., 2004; Robilotto and Zaidi, 2004), ii) the use of sophisticated graphics simulations (e.g. Yang and Maloney, 1999; Fleming, Dror, & Adelson, 2003; Boyaci, Maloney, & Hersh, 2003; Delahunt and Brainard, 2004), iii) the design of hybrid systems that combine real objects with image-based graphics and video projection (Ling and Hurlbert, 2004), and iv) psychophysical procedures (Maloney and Yang, 2003; Obein, Knoblauch, & Viénot, 2004) have opened the door for systematic exploration of a wider range of phenomena. Recent papers include work on how well vision compensates for changes in surface orientation (Boyaci et al., 2003; Ripamonti et al., 2004), how effectively it discounts inter-reflections among nearby surfaces (Bloj, Kersten, & Hurlbert, 1999; Doerschner, Boyaci, & Maloney, 2004; Delahunt and Brainard, 2004), and how the visual system effectively estimates the spectral properties and spatial layout of the illuminant in three-dimensional scenes (Kraft & Brainard, 1999; Yang & Maloney, 1999; Boyaci, Maloney, & Hersh, 2003; Bloj et al., 2004; Boyaci, Doerschner, & Maloney, 2004; Khang and Zaidi, 2004). 
The second thread that leads to papers in the current issue is a focus on the functional utility of color and light-ness perception \3- the idea that these percepts inform us about the properties of objects rather than those of light spectra. This focus resulted in a renaissance of research in color constancy over the past two decades, with particular progress being made in the development of computational models that explore how, in principle, object surface properties can be estimated from image data. As with the experimental lines, early work focused on simple scene geometries (for reviews see Hurlbert, 1998; Maloney, 1999) but consideration has recently expanded to three-dimensional configurations (Adelson and Pentland, 1996; Yang and Maloney, 1999; Bell and Freeman, 2001; Dror, Willsky, & Adelson, 2004) Of particular interest has been the elaboration of purely computational formulations into parametric models of human performance (e.g. Brainard Brunt, & Speigle, 1997; Brainard Kraft, & Longère, 2003; Boyaci et al., 2003; Doerschner et al., 2004; Boyaci et al., 2004; Bloj et al., 2004), tests of how well the visual system exploits image information identified in computational studies (Yang and Maloney, 2001; Delahunt and Brainard, 2004; Smithson and Zaidi, 2004), investigations of how well the visual system recovers perceptual correlates of material properties other than diffuse surface reflectance, such as gloss and translucency (Lu, Koenderink, & Kappers, 2000; Fleming et al., 2003; Pont & Koenderink, 2003; Obein et al., 2004), as well as how geometric aspects of surface reflectance interact with the perception of shape (Fleming et al., 2003). 
Acknowledgments
Commercial relationships: none. 
Corresponding author: David H. Brainard. 
Address: Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104. 
References
Adelson, E. H. Pentland, A. P. (1996). The perception of shading and reflectance. In Knill, D. Richards, W. (Eds.), Visual Perception: Computation and Psychophysics (pp. 409–423). New York: Cambridge University Press.
Bell, M. Freeman, W. T. (2001) Learning Local Evidence for Shading and Reflectance, IEEE International Conference on Computer Vision (ICCV), 1, 670–677.
Bloj, M. G. Kersten, D. Hurlbert, A. C. (1999), Perception of three-dimensional shape influences colour perception through mutual illumination. Nature, 402, 877–879. [PubMed] [PubMed]
Bloj, M. Ripamonti, C. Mitha, K. Hauck, R. Greenwald, S. Brainard, D. H. (2004) An equivalent illuminant model for the effect of surface slant on perceived lightness. Journal of Vision, 4(9), 735–746, http://journalofvision.org/4/9/6/, doi:10.1167/4.9.6. [PubMed][Article] [CrossRef] [PubMed]
Boyaci, H. Maloney, L. T. Hersh, S. (2003). The effect of perceived surface orientation on perceived surface albedo in binocularly viewed scenes. Journal of Vision, 3(8), 541–553, http://journalofvision.org/3/8/2/, doi:10.1167/3.8.2. [PubMed][Article] [CrossRef] [PubMed]
Boyaci, H. Doerschner, K. Maloney, L. T. (2004) Perceived surface color in binocularly viewed scenes with two light sources differing in chromaticity. Journal of Vision, 4(9), 664–679, http://journalofvision.org/4/9/1/, doi:10.1167/4.9.1. [PubMed][Article] [CrossRef] [PubMed]
Brainard, D. H. Brunt, W. A. Speigle, J. M. (1997). Color constancy in the nearly natural image. 1. asymmetric matches. Journal of the Optical Society of America A, 14, 2091–2110. [PubMed] [CrossRef]
Brainard, D. H. Kraft, J. M. Longère, P. (2003). Color constancy: developing empirical tests of computational models. In Mausfeld, R. Heyer, D. (Eds.), Colour Perception: Mind and the Physical World (pp. 307–334). Oxford: Oxford University Press.
Delahunt, P. B. Brainard, D. H. (2004) Color constancy under changes in reflected illumination. Journal of Vision, 4(9), 764–778, http://journalofvision.org/4/9/8/, doi:10.1167/4.9.8. [PubMed][Article] [CrossRef] [PubMed]
Doerschner, D. Boyaci, H. Maloney, L. T. (2004). Hu-man observers compensate for secondary illumination originating in nearby chromatic surfaces. Journal of Vi-sion, 4(2), 92–105, http://journalofvision.org/4/2/3/, doi:10.1167/4.2.3. [PubMed][Article]
Dror, R. E. Willsky, A. S. Adelson, E. H. (2004) Statistical characterization of real-world illumination. Journal of Vision, 4(9), (this issue), http://journalofvision.org/4/9/11/, doi:10.1167/4.9.11. [PubMed][Article]
Fleming, R. W. Dror, R. O. Adelson, E. H. (2003). Real-world illumination and the perception of surface reflectance properties. Journal of Vision, 3(5), 347–368, http://journalofvision.org/3/5/3/, doi:10.1167/3.5.3. [PubMed][Article] [CrossRef] [PubMed]
Fleming, R. W. Torralba, A. Adelson, E. H. (2004) Specular reflections and the perception of shape. Journal of Vision, 4(9), 798–820, http://journalofvision.org/4/9/10/, doi:10.1167/4.9.10. [PubMed][Article] [CrossRef] [PubMed]
Foley, J. D. van Dam, A. Feiner, S. K. Hughes, J. F. (1990). Computer Graphics: Principles and Practice (2 ed.). Reading, MA: Addison-Wesley.
Gilchrist, A. L. (1980), When does perceived lightness depend on perceived spatial arrangement? Perception & Psychophysics, 28, 527–538. [PubMed] [CrossRef] [PubMed]
Hochberg, J. E. Beck, J. (1954), Apparent spatial arrangements and perceived brightness. Journal of Experimental Psychology, 47, 263–266. [PubMed] [CrossRef] [PubMed]
Hurlbert, A. C. (1998). Computational models of color constancy. In Walsh, V. Kulikowski, J. (Eds.), Perceptual Constancy: Why Things Look As They Do (pp. 283–322). Cambridge: Cambridge University Press.
Khang, B.-G. Zaidi, Q. (2004) Illuminant color perception of spectrally filtered spotlights. Journal of Vision, 4(9), 680–692, http://journalofvision.org/4/9/2/, doi:10.1167/4.9.5. [PubMed][Article] [CrossRef] [PubMed]
Kraft, J. M. Brainard, D. H. (1999), Mechanisms of color constancy under nearly natural viewing. Proceedings of the National Academy of Science, 96, 307–312. [PubMed] [CrossRef]
Ling, Y. Hurlbert, A. (2004) Colour and size interactions in a real 3D object similarity task. Journal of Vision, 4(9), 721–734, http://journalofvision.org/4/9/5/, doi:10.1167/4.9.4. [PubMed][Article] [CrossRef] [PubMed]
Lu, R. Koenderink, J. J. Kappers, A. M. L. (2000) Specu-larities on surfaces with tangential hairs or grooves. Computer Vision and Image Understanding, 78, 320–335. [CrossRef]
Mach, E. (1886/1959). The Analysis of Sensations. New York: Dover.
Maloney, L. T. (1999). Physics-based approaches to modeling surface color perception. In Gegenfurtner, K. T. Sharpe, L. T. (Eds.), Color Vision: From Genes to Perception (pp. 387–416). Cambridge: Cambridge University Press.
Maloney, L. T. Yang, J. N. (2003). Maximum likelihood difference scaling. Journal of Vision, 3(8), 573–585, http://journalofvision.org/3/8/5/, doi:10.1167/3.8.5. [PubMed][Article] [CrossRef] [PubMed]
Nassau, K. (1983). The Physics and Chemistry of Color. New York: John Wiley & Sons.
Obein, G. Knoblauch, K. Viénot, F. (2004) Difference scaling of gloss: Non-linearity, binocularity and constancy. Journal of Vision, 4(9), 711–720, http://journalofvision.org/4/9/4/, doi:10.1167/4.9.4. [PubMed][Article] [CrossRef] [PubMed]
Pont, S. C. Koenderink, J. J. (2003) Split off-specular reflection and surface scattering from woven materials. Applied Optics-IP, 42, I526–1533. [CrossRef]
Ripamonti, C. Bloj, M. Hauck, R. Mitha, K. Greenwald, S. Maloney, S. I. Brainard, D. H. (2004) Measurements of the effect of surface slant on perceived lightness. Journal of Vision, 4(9), 747–763, http://journalofvision.org/4/9/7/, doi:10.1167/4.9.7. [PubMed][Article] [CrossRef] [PubMed]
Robilotto, R. Zaidi, Q. (2004) Limits of lightness identification for real objects under natural viewing conditions. Journal of Vision, 4(9), 779–797, http://journalofvision.org/4/9/9/, doi:10.1167/4.9.9. [PubMed][Article] [CrossRef] [PubMed]
Rutherford, M. D. Brainard, D. H. (2002). Lightness constancy: a direct test of the illumination estimation hypothesis. Psychological Science, 13, 142–149. [PubMed] [CrossRef] [PubMed]
Smithson, H. Zaidi, Q. (2004) Colour constancy in con-text: roles for local adaptation and levels of reference. Journal of Vision, 4(9), 693–710, http://journalofvision.org/4/9/3/, doi:10.1167/4.9.3. [PubMed][Article] [CrossRef] [PubMed]
Yang, J. N. Maloney, L. T. (2001). Illuminant cues in surface color perception: tests of three candidate cues. Vision Research, 41, 2581–2600. [PubMed] [CrossRef] [PubMed]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×