May 2008
Volume 8, Issue 7
Free
Research Article  |   May 2008
Perceptual organization and neural computation
Author Affiliations
Journal of Vision May 2008, Vol.8, i. doi:10.1167/8.7.i
  • Views
  • PDF
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Sergei Gepshtein, James H. Elder, Laurence T. Maloney; Perceptual organization and neural computation. Journal of Vision 2008;8(7):i. doi: 10.1167/8.7.i.

      Download citation file:


      © 2017 Association for Research in Vision and Ophthalmology.

      ×
  • Supplements
Our present understanding of perceptual organization has its roots in the observations and qualitative principles of the Gestalt psychologists. Gestaltists and their associates identified and classified phenomena that reflect how perceptual systems derive representations of the environment based on fragmentary information and stimulus context. A broad range of phenomena was explored in this early work. The perceptual organization of visual motion was a major focus, involving both simple (Korte, 1915; Ternus, 1936; von Schiller, 1933; Wertheimer, 1912) and complex (Duncker, 1929; Musatti, 1924; Rubin, 1927; Wallach, 1935) motion patterns. The perceptual organization of static form was explored in studies of part–whole relationships in simple planar figures (Rubin, 1915; Wertheimer, 1923/1938) and later in studies of illusory contours and amodal completion (Kanizsa, 1955; Michotte, Thinès, & Crabbé, 1964). Additional topics included lightness and color phenomena (Benary, 1924; Gelb, 1929; Katz, 1935; Wallach, 1948) and the perception of events (Michotte, 1941). In brief, the research areas addressed by the first generations of Gestalt psychologists spanned much of what is now vision science. The broad impact of Gestalt ideas is reflected in the exceptional scope of this special issue. 
This early work provides a rich source of observations and intuitions about mechanisms underlying various aspects of perceptual organization. Building on this foundation, current work is revolutionizing our understanding of perceptual organization in two respects. 
First, the qualitative observations and descriptions generated by early work are now replaced by rigorous computational theories. This advance can be traced through a number of developments. Hochberg's and Attneave's commitment to quantitative characterization of perceptual phenomena (Attneave, 1954, 1959; Hochberg & McAlister, 1953; Hochberg & Silverstein, 1956) have inspired a generation of more rigorous psychophysical approaches to spatial (e.g., Feldman 1997; Field, Hayes, & Hess, 1993; Kubovy, Holcombe, & Wagemans, 1998; Oyama, 1961; Pizlo, Salach-Golyska, & Rosenfeld, 1997) and spatiotemporal (e.g., Adelson & Movshon, 1982; Burt & Sperling, 1981; Gepshtein & Kubovy, 2000, 2007; Ullman, 1979) perceptual organization. Brunswik's early and, at the time, radical ideas about the “ecological validity” of perceptual organization (Brunswik & Kamiya, 1953) led to contemporary Bayesian models of perceptual organization grounded in the statistics of our visual environment (e.g., Elder & Goldberg, 2002; Geisler, Perry, Super, & Gallogly, 2001; Martin, Fowlkes, Tal, & Malik, 2001). Theory and technique from the computer vision community have provided candidate algorithms and computational frameworks that are being tested as models of perception (e.g., Lee & Mumford, 2003; Lowe, 1985; Roberts, 1965; Tu & Zhu, 2002; Witkin & Tenenbaum, 1983; Zucker, Hummel, & Rosenfeld, 1977). Researchers have sought organizational principles that could explain perceived surface lightness and color (Adelson, 1993, 2000; Gilchrist, 2006; Gilchrist et al., 1999) and developed models based on the physics of light-surface interaction (Boyaci, Doerschner, Snyder, & Maloney, 2006) or the statistical structure of natural scenes (Brainard et al., 2006). 
Second, direct recording from neurons in animals as well as imaging in human and non-human primates has begun to provide information about the neural mechanisms underlying key perceptual organization phenomena, including contour completion, contour salience, figure/ground perception, and a range of contextual effects (e.g., Albright & Stoner, 2002; Duncan, Albright, & Stoner, 2000; Gilbert & Wiesel, 1989; Lamme, 1995; Lee, Mumford, Romero, & Lamme, 1998; von der Heydt et al., 1984; Zhou, Friedman, & von der Heydt, 2000). 
The goal of this special issue is thus to highlight new methodological and theoretical developments in visual psychophysics, visual neuroscience and computational vision, with a particular emphasis upon the computational and neural bases of these findings. 
Consistent with the historically broad scope of perceptual organization research, this special issue concerns a broad range of visual phenomena: early visual coding, motion and event perception, contour integration, figure/ground perception, perception of 2D and 3D form, lightness and color perception, face and scene perception, attention and eye movements, audiovisual integration, and perceptual learning. Techniques also range broadly, from psychophysics to single-unit recording, fMRI, computational modeling and the statistical analysis of natural scenes. What binds these papers together, despite their broad scope over modalities and techniques, is a focus on the meaningful relational structure of the visual scene and the role of context on interpretation of stimulus information. Informed by the now classical work of the Gestalt psychologists, the authors of the work contained herein combine rigorous psychophysical techniques with the tools of mathematics, computational science, and neuroscience to recast our understanding of perceptual organization in terms of exacting quantitative theories. 
Acknowledgments
SG was supported by the Japanese Institute of Natural Sciences. JHE was supported by grants from NSERC, GEOIDE, OCE, and PREA. LTM was supported by NIH/NEI EY08266. 
Commercial relationships: none. 
Corresponding author: Sergei Gepshtein. 
Email: sergei@salk.edu. 
Address: VCL, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037. 
References
Adelson, E. H., Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns.Nature, 300, 523–525. [PubMed] [CrossRef] [PubMed]
Adelson, E. H. (1993). Perceptual organization and the judgment of brightness.Science, 262, 2042–2044. [PubMed] [CrossRef] [PubMed]
Adelson, E. H. Gazzaniga, M. (2000). Lightness perception and lightness illusion. The new cognitive neuroscience (pp. 339’351). Cambridge, MA:MIT press.
Albright, T. D., Stoner, G. R. (2002). Contextual influences on visual processing.Annual Review of Neuroscience, 25, 339–379. [PubMed] [CrossRef] [PubMed]
Attneave, F. (1954). Some informational aspects of visual perception.Psychological Review, 61, 183–193. [PubMed] [CrossRef] [PubMed]
Attneave, F. (1959). Applications of information theory to psychology. New York:Holt.
Benary, W. (1924). Beobachtungen zu einem Experiment über Helligkeitskontrast [Observations concerning an experiment on brightness contrast].Psychologische Forschung, 5, 131–142 [CrossRef]
Boyaci, H., Doerschner, K., Snyder, J. L., Maloney, L. T. (2006). Surface color perception in three-dimensional scenes.Visual Neuroscience, 23, 311–321. [PubMed] [CrossRef] [PubMed]
Brainard, D. H., Delahunt, P. B., Freeman, W. T., Kraft, J. M., Xiao, B. (2006). Bayesian model of human color constancy.Journal of Vision, 6((11):10, 1267–1281, http://journalofvisionorg/6/11/10/, doi:101167/6.11.10. [PubMed] [Article] [CrossRef]
Brunswik, E., Kamiya, J. (1953). Ecological cue-validity of proximity and of other Gestalt factors.American Journal of Psychology, 66, 20–32. [PubMed] [CrossRef] [PubMed]
Burt, P., Sperling, G. (1981). Time, distance, and feature trade-offs in visual apparent motion.Psychological Review, 88, 171–195. [PubMed] [CrossRef] [PubMed]
Duncan, R. O., Albright, T. D., Stoner, G. R. (2000). Occlusion and the interpretation of visual motion: Perceptual and neuronal effects of context.Journal of Neuroscience, 20, 5885–5897. [PubMed] [Article] [PubMed]
Duncker, K. (1929). Über induzierte Bewegung.Psychologische Forschung, 12, 180–259. [CrossRef]
Elder, J. H., Goldberg, R. M. (2002). Ecological statistics of Gestalt laws for the perceptual organization of contours.Journal of Vision, 2((4):5, 324–353., http://journalofvisionorg/2/4/5/, doi:101167/2.4.5. [PubMed] [Article] [CrossRef]
Feldman, J. (1997). Curvilinearity, covariance, and regularity in perceptual groups.Vision Research, 37, 2835–2848. [PubMed] [CrossRef] [PubMed]
Field, D. J., Hayes, A., Hess, R. F. (1993). Contour integration by the human visual system: Evidence for a local association field.Vision Research, 33, 173–193. [PubMed] [CrossRef] [PubMed]
Geisler, W. S., Perry, J. S., Super, B. J., Gallogly, D. P. (2001). Edge co-occurrence in natural images predicts contour grouping performance.Vision Research, 41, 711–724. [PubMed] [CrossRef] [PubMed]
Gelb, A. von Bethe, W. A. (1929). Die gFarbenkonstanzh; der Sehdinge. Handbuch norm. und pathol. Psychologie. (pp. 594–678)
Gepshtein, S., Kubovy, M. (2000). The emergence of visual objects in space-time.Proceedings of the National Academy of Sciences of the United States of America, 97, 8186–8191. [PubMed] [Article] [CrossRef] [PubMed]
Gepshtein, S., Kubovy, M. (2007). The lawful perception of apparent motion.Journal of Vision, 7((8):9, 1–15, http://journalofvisionorg/7/8/9/, doi:101167/7.8.9. [PubMed] [Article] [CrossRef] [PubMed]
Gilbert, C. D., Wiesel, T. N. (1989). Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex.Journal of Neuroscience, 9, 2432–2442. [PubMed] [Article] [PubMed]
Gilchrist, A. L. (2006). Seeing black and white. New York:Oxford.
Gilchrist, A., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X. (1999). An anchoring theory of lightness perception.Psychological Review, 106, 795–834. [PubMed] [CrossRef] [PubMed]
Hochberg, J., Silverstein, A. (1956). A quantitative index of stimulus-similarity proximity vs.American Journal of Psychology, 69, 456–458. [PubMed] [CrossRef] [PubMed]
Hochberg, J. E., McAlister, E. (1953). A quantitative approach to figural “goodness”.Journal of Experimental Psychology, 46, 361–364. [PubMed] [CrossRef] [PubMed]
Kanizsa, G. (1955). .Rivista di Psicologia, 49, 7–30.
Katz, D. (1935). The world of colour. London:Kegan Paul, Trench, Trubner.
Korte, A. (1915). Kinematoskopische untersuchungen [Kinematoscopic investigations]. Zeitschrift für Psychologie, 72, 194–296.
Kubovy, M., Holcombe, A. O., Wagemans, J. (1998). On the lawfulness of grouping by proximity.Cognitive Psychology, 35, 71–98. [PubMed] [CrossRef] [PubMed]
Lamme, V. A. (1995). The neurophysiology of figure-ground segregation in primary visual cortex.Journal of Neuroscience, 15, 1605–1615. [PubMed] [Article] [PubMed]
Lee, T. S., Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex.Journal of the Optical Society of America A, Optics, 1434–1448. [PubMed] [CrossRef]
Lee, T. S., Mumford, D., Romero, R., Lamme, V. A. (1998). The role of the primary visual cortex in higher level vision.Vision Research, 38, 2429–2454. [PubMed] [CrossRef] [PubMed]
Lowe, D. G. (1985). Perceptual organization and object recognition. Boston, Mass: Kluwer.
Martin, D., Fowlkes, C., Tal, D., Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proceedings of the 8th IEEE International Conference on Computer Vision(pp. 416–424). Los Alamitos, CA: IEEE Computer Society Press.
Michotte, A. (1941). La causalité physique est-elle une donnée phénoménale? [Is physical causality a phenomenal given?].Tijdschrift voor Philosophie, 3, 290–328.
Michotte, A. (1964). Les compléments amodaux des structures perceptives [Amodal completions of perceptual structures]. Louvain: Publications Universitaires, Studia Psychologica.
Musatti, C. L. (1924). Sui fenomeni stereocinetici.Archivio Italiano di Psicologia, 3, 105120.
Oyama, T. (1961). Perceptual grouping as a function of proximity.Perceptual and Motor Skills, 13, 305–306. [CrossRef]
Pizlo, Z., Golyska, M., Rosenfeld, A. (1997). Curve detection in a noisy image.Vision Research, 37, 1217–1241. [PubMed] [CrossRef] [PubMed]
Roberts, L. (1965). Machine perception of 3-dimensional solids, optical and electro-optical information processing. Cambridge, MA: MIT Press.
Rubin, E. (1915). Synoplevde Figurer. Kopenhagen: Gyldendalske.
Rubin, E. (1927). Visuell wahrgenommene wirkliche Bewegungen [Visually perceived genuine motions]. Zeitschrift für Psychologie, 103, 384–392.
Ternus, J. (1936). A source of Gestalt psychology (pp. 149–160).London: Routledge & Kegan Paul. (Original work published 1926).
Tu, Z. W., Zhu, S. C. (2002). Image segmentation by data-driven Markov Chain Monte Carlo.IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 657–673. [CrossRef]
Ullman, S. (1979). The interpretation of visual motion. Cambridge: MIT Press.
von der Heydt, R., Peterhand, E., Baumgartner, G. (1984). Illusory contours and cortical neuron responses.Science, 224, 1260–1262. [PubMed] [CrossRef] [PubMed]
von Schiller, P. (1933). .Psychologische Forschung, 17, 179–214. [CrossRef]
Wallach, H. (1935). Ueber visuell wahrgenommene Bewegungsrichtung [On visually perceived direction of motion].Psychologische Forschung, 20, 325–380. [CrossRef]
Wallach, H. (1948). Brightness constancy and the nature of achromatic colors.Journal of Experimental Psychology, 38, 310–324. [CrossRef] [PubMed]
Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift für Psychologie, 61, 161–265
Wertheimer, M. Ellis, W.D. (1938). Laws of organization in perceptual forms.A sourcebook of Gestalt psychology (pp. 71–88). London, UK: Routledge and Kegan Paul.
Witkin, A. P., Tenenbaum, J. M. Beck, J., Hope, B., Rosenfeld, A. (1983). On the role of structure in vision. Human and machine vision. New York: Academic Press..
Zhou, H., Friedman, H. S., Heydt, R. (2000). Coding of border ownership in monkey visual cortex.Journal of Neuroscience, 20, 6594–6611. [PubMed] [Article] [PubMed]
Zucker, S. W., Hummel, R., Rosenfeld, A. (1977). An application of relaxation labeling to line and curve enhancement.IEEE Transactions on Computing, 26, 394–403. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×