September 2015
Volume 15, Issue 12
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2015
Seeing transparent liquids from refraction-based image deformation and specular reflection
Author Affiliations
  • Takahiro Kawabe
    NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Japan
  • Shin'ya Nishida
    NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Japan
Journal of Vision September 2015, Vol.15, 935. doi:10.1167/15.12.935
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Takahiro Kawabe, Shin'ya Nishida; Seeing transparent liquids from refraction-based image deformation and specular reflection. Journal of Vision 2015;15(12):935. doi: 10.1167/15.12.935.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Without traditional luminance/color cues of perceptual transparency, dynamic deformations of a static image can produce a vivid sensation of a transparent layer. Moreover, this subjective transparent layer looks like a liquid when the deformation flow simulates, precisely or crudely, image deformation due to refraction of lights at a flowing liquid surface (Kawabe, et al., 2013, VSS). Transparent liquids not only refract lights from their body, but also reflect light. Refraction and reflection are never independent of each other, since both depend on the surface orientation map. If visual processing properly takes the physics of refraction into account, it is likely to be sensitive to the congruency between the refraction-based image deformation and the specular reflection. To test this, we synthesized, using Blender software, several scenes including transparent liquid flows in which the refraction-based image deformation was congruent with the specular reflection. To make incongruent stimuli, we combined the image deformation taken from one scene with the specular reflection taken from another. Observers viewed the congruent or incongruent scenes, and made ratings as to the strength of liquid and glossiness impression on five point scales. We found both rating scores to be generally high as long as the scenes were dynamic, regardless of the deformation-specular congruency. We also had observers discriminate congruent scenes from incongruent ones, and found that the discrimination was very difficult. These results indicate that, at least when perceiving a dynamic transparent liquid, the visual system is unable to check the congruency between the refraction-based image deformation and the specular reflection. The visual system may heuristically estimate the presence of a dynamic transparent liquid flow from the analysis of characteristic image deformations, likely produced by refraction, independently of analysis of the specular reflections, and without precisely considering the physical liquid structure.

Meeting abstract presented at VSS 2015

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×