September 2015
Volume 15, Issue 12
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2015
ON and OFF subfield organization of layer 2/3 neurons in tree shrew visual cortex.
Author Affiliations
  • Kuo-Sheng Lee
    Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Boca Raton, FL, USA
  • Xiaoying Huang
    Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
  • David Fitzpatrick
    Department of Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
Journal of Vision September 2015, Vol.15, 990. doi:10.1167/15.12.990
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Kuo-Sheng Lee, Xiaoying Huang, David Fitzpatrick; ON and OFF subfield organization of layer 2/3 neurons in tree shrew visual cortex.. Journal of Vision 2015;15(12):990. doi: 10.1167/15.12.990.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

In vivo 2-photon imaging of calcium sensors in visual cortex has provided a host of new insights into the fine scale columnar mapping of response properties like orientation, direction, and visual space. Extracellular recording in carnivores have shown a columnar segregation of ON- and OFF-center geniculate inputs in layer 4, which could provide the basis for the generation of orientation selectivity. However, the spatial arrangement of ON and OFF in layer 2/3 has not been addressed. In this study we used 2-photon imaging of GCamP6s calcium fluorescent signals to map the receptive fields of thousands of neurons in layer 2/3 of tree shrew visual cortex with reverse correlation using sparse noise. We found a diverse array of receptive field properties in layer 2/3 including neurons with classic simple, complex and single sign receptive fields (either ON or OFF). The ON and OFF subfields in layer 2/3 were found to exhibit topologically distinct relationships with the maps of visual space and orientation preference. In most cases, the centers of OFF subfields for neurons in a given region of cortex were confined to a compact region of visual space and displayed a smooth retinotopic progression, while the centers of the ON subfields were distributed over a wider region of visual space and displayed less retinotopic precision. Consistent with the arrangement of ON and OFF subfields of simple cells in other species, the angle of displacement in visual space of the ON and OFF subfields for individual neurons could be used to predict the organization of the orientation map. Taken together, these results suggest that the differential arrangement of ON and OFF subfield centers by cortical circuits meets the conjoint constraints of mapping both visuotopy and orientation in a single population of neurons and in a fashion that preserves continuity for both stimulus features.

Meeting abstract presented at VSS 2015

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×