September 2017
Volume 17, Issue 10
Open Access
Vision Sciences Society Annual Meeting Abstract  |   August 2017
Spatiotemporal maps of quantal noise, dark light and late neural noise limiting contrast sensitivity
Author Affiliations
  • Daphne Silvestre
    Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
  • Angelo Arleo
    Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
  • Remy Allard
    Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
Journal of Vision August 2017, Vol.17, 785. doi:10.1167/17.10.785
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to Subscribers Only
      Sign In or Create an Account ×
    • Get Citation

      Daphne Silvestre, Angelo Arleo, Remy Allard; Spatiotemporal maps of quantal noise, dark light and late neural noise limiting contrast sensitivity. Journal of Vision 2017;17(10):785. doi: 10.1167/17.10.785.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

As retinal illuminance increases, contrast sensitivity passes from a linear range (i.e., proportional to luminance) to a de Vries-Rose range (i.e., proportional to the square root of the background luminance) to a Weber range (i.e., independent of luminance). It is generally admitted that contrast sensitivity is limited by quantal noise (i.e., absorption probability) in the de Vries-Rose range, by spontaneous activity at the retina level (i.e., dark light) in the linear range and by neural noise occurring after contrast normalization in the Weber range. The target of the current study was to measure the spatiotemporal maps of these three internal noises in order to differentiate the spatiotemporal and luminance range of these three internal noise sources and better characterize the internal factors limiting contrast sensitivity. Contrast thresholds to flickering gratings were measured with and without external noise over a wide range of spatiotemporal frequencies and retinal illuminance. For each spatiotemporal frequency, contrast thresholds as a function of retinal illuminance enabled us to estimate the levels of the three internal noises (quantal, dark light and late neural), which were then used to build the three corresponding spatiotemporal maps. These maps led us to elaborate a model characterizing the factors limiting contrast sensitivity as a function of spatial and temporal frequencies.

Meeting abstract presented at VSS 2017

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×