December 2001
Volume 1, Issue 3
Free
Vision Sciences Society Annual Meeting Abstract  |   December 2001
Do cause and effect need to be temporally continuous? Learning to compensate for delayed vestibular feedback
Author Affiliations
  • Douglas W. Cunningham
    Max Planck Institute for Biological Cybernetics, Tübingen, Germany
  • Bjoern Kreher
    Max Planck Institute for Biological Cybernetics, Tübingen, Germany
  • Markus Heyde
    Max Planck Institute for Biological Cybernetics, Tübingen, Germany
  • Heinrich H. Buelthoff
    Max Planck Institute for Biological Cybernetics, Tübingen, Germany
Journal of Vision December 2001, Vol.1, 135. doi:https://doi.org/10.1167/1.3.135
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Douglas W. Cunningham, Bjoern Kreher, Markus Heyde, Heinrich H. Buelthoff; Do cause and effect need to be temporally continuous? Learning to compensate for delayed vestibular feedback. Journal of Vision 2001;1(3):135. https://doi.org/10.1167/1.3.135.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Delaying the presentation of information to one modality relative to another (an intersensory temporal offset) impairs performance on a wide range of tasks. We have recently shown, however, that a few minutes exposure to delayed visual feedback induces sensorimotor temporal adaptation, returning performance to normal. Here, we examine whether adaptation to delayed vestibular feedback is possible. Subjects were placed on a motion platform, and were asked to perform a stabilization task. The task was similar to balancing a rod on the tip of your finger. Specifically, the platform acted as if it were on the end of an inverted pendulum, with subjects applying an acceleration to the platform via a joystick. The more difficulty one has in stabilizing the platform the more it will oscillate, increasing the variability in the platform's position. The experiment was divided into 3 sections. During the Baseline section (5 minutes), subjects performed the task with immediate vestibular feedback. They then were presented with a Training section, consisting of 4 sessions (5 minutes each) during which vestibular feedback was delayed by 500 ms. Finally, subjects were presented with a Post-test (two minutes) with no feedback delay. Subjects performed rather well in the Baseline section (average standard deviation of platform tilt was 1.37 degrees). The introduction of the delay greatly impaired performance (8.81 degrees standard deviation in the 1st Training session), but performance rapidly showed significant improvement (5.59 degrees standard deviation during the last training section, p<0.04). Subjects clearly learned to compensate, at least partially, for the delayed vestibular feedback. Performance during the Post-test was worse than during Baseline (2.48 degrees standard deviation in tilt). This decrease suggests that the improvement seen during training might be the result of intersensory temporal adaptation.

Cunningham, D.W., Kreher, B., von der  Heyde, M., Buelthoff, H.H.(2001). Do cause and effect need to be temporally continuous? Learning to compensate for delayed vestibular feedback [Abstract]. Journal of Vision, 1( 3): 135, 135a, http://journalofvision.org/1/3/135/, doi:10.1167/1.3.135. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×