December 2001
Volume 1, Issue 3
Free
Vision Sciences Society Annual Meeting Abstract  |   December 2001
An explanation for unidirectional motion aftereffects following adaptation to bivectorial transparent motion
Author Affiliations
  • Z. Vidnyanszky
    Neurobiology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
  • E. Blaser
    Laboratory for Vision Research, Rutgers University, NJ, USA
  • T. V. Papathomas
    Laboratory for Vision Research, Rutgers University, NJ, USA
Journal of Vision December 2001, Vol.1, 161. doi:https://doi.org/10.1167/1.3.161
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Z. Vidnyanszky, E. Blaser, T. V. Papathomas; An explanation for unidirectional motion aftereffects following adaptation to bivectorial transparent motion. Journal of Vision 2001;1(3):161. https://doi.org/10.1167/1.3.161.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Two spatially superimposed fields of dots, moving coherently, but in, say, opposite or orthogonal directions, will appear to observers as two sheets of dots sliding over one another. However, prolonged exposure to such transparent motion does not produce transparent motion aftereffects; instead aftereffects are unitary and bear a direction opposite to the vector sum of the adapting dot fields. Why does adaptation to bivectorial transparent motion give rise to a unidirectional motion aftereffect is an intriguing and important question. We offer an explanation for this phenomenon, based on well established neurophysiological and psychophysical results. It is well known that locally balanced motion signals in opposite directions, i.e. counterphase modulated gratings or locally paired dots moving in opposite directions, do not give rise to transparency, but instead appear as directionless flicker. Additionally, in the case of locally paired orthogonally moving dots, motion again is not transparent, but perceived in the vector-average direction of the two components. After adaptation to bivectorial transparent motion, we argue that the motion system faces the same challenge as when viewing such locally balanced motion signals: different directional signals arise from exactly the same locations in the visual field. In short, bivectorial motion aftereffects do not appear transparent for the same reason locally balanced motion signals do not appear transparent. In both cases, competitive interactions between local direction detectors establish a single local velocity.

Vidnyanszky, Z., Blaser, E., Papathomas, T.V.(2001). An explanation for unidirectional motion aftereffects following adaptation to bivectorial transparent motion [Abstract]. Journal of Vision, 1( 3): 161, 161a, http://journalofvision.org/1/3/161/, doi:10.1167/1.3.161. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×