November 2002
Volume 2, Issue 7
Free
Vision Sciences Society Annual Meeting Abstract  |   November 2002
Variance predicts visual-haptic adaptation in shape perception
Author Affiliations
  • Ahna Reza Girshick
    UC Berkeley Vision Science, USA
  • Martin S. Banks
    UC Berkeley Vision Science, USA
  • Marc O. Ernst
    Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany
  • Robert Cooper
    Psychology Dept., San Jose State University, USA
  • Robert A. Jacobs
    University of Rochester Brain and Cognitive Sciences
Journal of Vision November 2002, Vol.2, 670. doi:https://doi.org/10.1167/2.7.670
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Ahna Reza Girshick, Martin S. Banks, Marc O. Ernst, Robert Cooper, Robert A. Jacobs; Variance predicts visual-haptic adaptation in shape perception. Journal of Vision 2002;2(7):670. https://doi.org/10.1167/2.7.670.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

When people are exposed repeatedly to a conflict in visually and haptically specified shapes, they adapt and the apparent conflict is eventually eliminated. The inter-modal adaptation literature suggests that the conflict is resolved by adapting the haptic shape estimator. Another possibility is that both estimators adapt by amounts that depend on their relative variances. Thus, the visual estimator could adapt if its variance were high enough. Is relative reliability the better predictor of visual-haptic adaptation? We examined this by manipulating the variance of the visual signal during inter-modal adaptation and then measuring changes in the within-modal (vision-alone and haptics-alone) shape percepts. The stimulus was a 3D object with a rectangular front surface. It was specified visually by random-dot stereograms and haptically by PHANToM force-feedback devices. In pre- and post-tests, observers judged whether its front surface was taller or shorter than it was wide. For each modality, we found the aspect ratio that was perceptually a square. During adaptation, a conflict was created between the visually and haptically specified shapes by independently altering the visual and haptic aspect ratios of the front surface. The variance of the visual estimator (determined by dot number) was either low or high. We assessed the amount of visual and haptic adaptation by comparing pre- and post-test shape estimates. When the visual estimator's variance was low, essentially all of the adaptation occurred in the haptic estimator. When the visual estimator's variance was high, we observed visual and haptic adaptation. These results suggest that the relative reliability of visual and haptic estimators determines the relative amounts of visual and haptic adaptation.

Girshick, A. R., Banks, M. S., Ernst, M. O., Cooper, R., Jacobs, R. A.(2002). Variance predicts visual-haptic adaptation in shape perception [Abstract]. Journal of Vision, 2( 7): 670, 670a, http://journalofvision.org/2/7/670/, doi:10.1167/2.7.670. [CrossRef]
Footnotes
 Acknowledgements: We thank AFOSR, Silicon Graphics, and DOE for support of this project.
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×