October 2003
Volume 3, Issue 9
Vision Sciences Society Annual Meeting Abstract  |   October 2003
Detection of chromatic gratings in noise: field sensitivity and additivity within chromatic channels
Author Affiliations
  • Delwin T Lindsey
    Psychology, Ohio State University, Mansfield, Ohio, USA
  • Angela M Brown
    Optometry, Ohio State University, Columbus, Ohio, USA
Journal of Vision October 2003, Vol.3, 710. doi:https://doi.org/10.1167/3.9.710
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Delwin T Lindsey, Angela M Brown; Detection of chromatic gratings in noise: field sensitivity and additivity within chromatic channels. Journal of Vision 2003;3(9):710. https://doi.org/10.1167/3.9.710.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

In spite of 20 years of research, there is little consensus as to the number or sensitivity profiles of the higher-order channels that mediate chromatic sensitivity in human color vision. We have studied the problem in a chromatic noise masking experiment using a combined field sensitivity and field additivity paradigm. Our goal was to evaluate the suggestion of D'Zmura & Knoblauch that channels seem narrowly tuned because the subject uses different channels to detect a test stimulus under different masking conditions (“off-axis looking”). We used an orange/blue isoluminant test grating, and dynamic isoluminant chromatic noise maskers, with variable azimuth but constant (gray) average chromaticity and 5% luminance jitter within a rescaled DKL color space. We measured the field sensitivity of the mechanism(s) that detected our test grating, and found a profile that was most sensitive to the red/green (“RED”) noise masker and much less sensitive to the orange/blue (“ORANGE”) and yellow/purple (“YELLOW”) maskers. This suggested that our test grating was detected via a narrowly tuned “red” mechanism. We compared detection thresholds for our orange/blue test grating presented with a strong RED masker, a strong YELLOW masker, and both maskers combined. The threshold-elevating power of the YELLOW masker was 15 times greater when combined with the RED masker than when it was presented alone. This suggested that the orange/blue grating is detected via a “red” channel when it is presented alone or with the YELLOW masker, but shifts to a “yellow” or “orange” channel when the RED masker is used. The color appearance of the orange/blue test grating changed in agreement with this interpretation: it looked strikingly red/green in the presence of the YELLOW masker alone, but looked orangeish/bluish in the presence of the RED masker. We conclude that the narrow tuning in our single-masker conditions is probably due to off-axis looking, just as D'Zmura & Knoblauch suggested.

Lindsey, D. T., Brown, A. M.(2003). Detection of chromatic gratings in noise: field sensitivity and additivity within chromatic channels [Abstract]. Journal of Vision, 3( 9): 710, 710a, http://journalofvision.org/3/9/710/, doi:10.1167/3.9.710. [CrossRef] [PubMed]

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.