June 2004
Volume 4, Issue 8
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2004
A Laminar Cortical Model of Stereopsis and 3D Surface Perception: Closure and da Vinci Stereopsis
Author Affiliations
  • Stephen Grossberg
    Dept. of Cognitive and Neural Systems, Boston University
Journal of Vision August 2004, Vol.4, 599. doi:https://doi.org/10.1167/4.8.599
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Stephen Grossberg, Yongqiang Cao; A Laminar Cortical Model of Stereopsis and 3D Surface Perception: Closure and da Vinci Stereopsis. Journal of Vision 2004;4(8):599. https://doi.org/10.1167/4.8.599.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model further develops the 3D LAMINART model of Grossberg and Howe (Vision Research, 2003). It describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the lateral geniculate nucleus (LGN) and cortical areas V1, V2, and V4. In particular, it details how interactions between layers 4, 3B, and 2/3A in V1 and V2 contribute to stereopsis, and proposes how binocular and monocular information combine to form 3D boundary and surface representations. The current model includes two main new developments: (1) It clarifies that surface-to-boundary feedback is needed in stereopsis, and plays an indispensable role in some cases. Previous modeling has suggested that the complementary properties of boundary and surface computations can be rendered consistent by this feedback pathway, which is proposed to operate between V2 pale stripes and thin stripes, and that it also helps to explain data about 3D figure-ground separation. (2) It proposes that the disparity filter, which helps to solve the Correspondence Problem, can be realized as part of the inhibitory interactions that control perceptual grouping by horizontal connections in V2 layer 2/3. The model hereby combines suppression of false matches with long-range Gestalt grouping processes. The enhanced model explains all psychophysical data previously simulated by Grossberg and Howe (2003), such as contrast variations of dichoptic masking and the Correspondence Problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, and da Vinci stereopsis. In addition, it can explain psychophysical data such as the role of perceptual closure and variations of da Vinci stereopsis, which previous models cannot yet explain.

Grossberg, S., Cao, Y.(2004). A Laminar Cortical Model of Stereopsis and 3D Surface Perception: Closure and da Vinci Stereopsis [Abstract]. Journal of Vision, 4( 8): 599, 599a, http://journalofvision.org/4/8/599/, doi:10.1167/4.8.599. [CrossRef]
Footnotes
 S.G. was supported by AFOSR and ONR and Y.C. by NSERC.
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×