June 2004
Volume 4, Issue 8
Vision Sciences Society Annual Meeting Abstract  |   August 2004
Responses of MT neurons to barber pole stimuli
Author Affiliations
  • Christopher C. Pack
    Harvard Medical School, USA
Journal of Vision August 2004, Vol.4, 859. doi:https://doi.org/10.1167/4.8.859
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Christopher C. Pack, Richard T. Born; Responses of MT neurons to barber pole stimuli. Journal of Vision 2004;4(8):859. https://doi.org/10.1167/4.8.859.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

A moving grating contains two types of motion signals: contour signals found along the stripes of the grating, and terminator signals at the edges of the aperture. The terminator signals are especially salient perceptually, so that a grating displayed in a rectangular aperture appears to slide along the long axis of the aperture. We used this “barber-pole illusion” to probe the integrative properties of MT neurons in alert macaque monkeys. The vast majority of MT neurons responded preferentially to motion along the long axis of the aperture, in accordance with the perceptual barber-pole illusion. The extent of the bias introduced by the aperture elongation was dependent on the aspect ratio, but not on the size of the stimulus, or its position within the MT receptive fields. This effect was reduced, but not abolished, when the terminator signals at the grating edges were rendered “extrinsic” by a frame that simulated occlusion. We studied the effect of monocular occlusion cues further, using a square grating patch with occluders at either the horizontal or vertical edges of the patch. In this case, the neurons were biased in the direction of the “intrinsic” terminators. However, MT neurons were insensitive to other stimulus manipulations that changed the global surface layout without altering local occlusion cues. We used the same stimuli to study neurons at an earlier stage of motion processing in striate cortex. We found that V1 neurons responded only to local motion cues (intrinsic terminators and contours) placed within their receptive fields, but not to the global motion of the barber-pole stimuli. We conclude that MT neurons accord more weight to terminators than to contours, and can use monocular cues to distinguish between intrinsic and extrinsic terminators. The properties of end-stopped, direction-selective cells in V1 suggest that they are well-suited to making both of these distinctions based on local cues.

Pack, C. C., Born, R. T.(2004). Responses of MT neurons to barber pole stimuli [Abstract]. Journal of Vision, 4( 8): 859, 859a, http://journalofvision.org/4/8/859/, doi:10.1167/4.8.859. [CrossRef]
 Supported by NIH EY11379.

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.