September 2005
Volume 5, Issue 8
Vision Sciences Society Annual Meeting Abstract  |   September 2005
Implicit discrimination of visual arrays by number in rhesus macaques
Author Affiliations
  • Jamie D. Roitman
    Dept. of Neurobiology
  • Elizabeth M. Brannon
    Ctr. for Cognitive Neuroscience, and Dept. of Psychology, Duke University
  • Michael L. Platt
    Dept. of Neurobiology, and Ctr. for Cognitive Neuroscience
Journal of Vision September 2005, Vol.5, 1044. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Jamie D. Roitman, Elizabeth M. Brannon, Michael L. Platt; Implicit discrimination of visual arrays by number in rhesus macaques. Journal of Vision 2005;5(8):1044.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Research suggests that animals, including humans, internally represent number as an analog magnitude on a subjective ‘number line’. The internal representation of number is thought to be less precise with increasing magnitude, accounting for the size and distance effects on numerical judgments consistent with Weber's law. A critical prediction of Weber's law is that discriminability of two numbers depends on their ratio, regardless of actual magnitude. To test this prediction, we trained a monkey to perform an implicit visual numerical discrimination task which varied the number of elements in a visual array, while holding their ratios constant and controlling for element size and density. Specifically, midway through the delay period of a visually-guided saccade task, an array of n elements flashed briefly (300ms) in the hemifield opposite the saccade target. On the majority of trials the number of elements in the array was ‘standard’ (e.g. 8), and correct saccades were followed by a small reward (100ms juice delivery). On remaining trials, an array with an ‘oddball’ number of elements (e.g. 4 or 16) was presented and a large reward (300ms juice) followed correct saccades. The values of the standard and oddball arrays were varied across blocks of trials. Task execution was thus independent of the number of elements in the array, while differences in reward value encouraged attending to the array. Saccade reaction time differed on oddball trials, suggesting that the number of elements in the array was processed implicitly. This task thus provides a powerful paradigm for investigating implicit visual numerical processing and its neurophysiological correlates in the primate brain.

Roitman, J. D. Brannon, E. M. Platt, M. L. (2005). Implicit discrimination of visual arrays by number in rhesus macaques [Abstract]. Journal of Vision, 5(8):1044, 1044a,, doi:10.1167/5.8.1044. [CrossRef]

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.