September 2005
Volume 5, Issue 8
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2005
Human movement coordination implicates relative direction as the information for relative phase
Author Affiliations
  • Andrew D. Wilson
    Department of Psychology, Indiana University, Bloomington IN
  • David R. Collins
    Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO
  • Geoffrey P. Bingham
    Department of Psychology, Indiana University, Bloomington IN
Journal of Vision September 2005, Vol.5, 346. doi:https://doi.org/10.1167/5.8.346
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Andrew D. Wilson, David R. Collins, Geoffrey P. Bingham; Human movement coordination implicates relative direction as the information for relative phase. Journal of Vision 2005;5(8):346. https://doi.org/10.1167/5.8.346.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

The current studies explore the informational (perceptual) basis of the coupling in human rhythmic movement coordination tasks. Movement stability in these tasks is an asymmetric U-shaped function of mean relative phase; 0° is maximally stable, 90° is maximally unstable and 180° is intermediate. Bingham (2001, 2004a, 2004b) hypothesized that the information used to perform coordinated rhythmic movement is the relative direction of movement, the resolution of which is determined by relative speed. We used an experimental paradigm that entails using a circular movement to produce a linear motion of a dot on a screen, which must then be coordinated with a linearly moving computer controlled dot. The circularity adds a component to the movement that is orthogonal to the display. Relative direction is not uniquely defined between orthogonal components of motion, but relative speed is; based on Bingham (2001, 2004a, 2004b) it was predicted that the addition of the component would only introduce a symmetric noise component and not otherwise contribute to the U-shape structure of movement stability. Results for Experiment 1 supported the hypothesis; movement that involved the additional component was uniformly less stable than movement that involved only parallel component along which relative direction can be defined. Two additional studies ruled out alternative explanations for the pattern of data in Experiment 1. Overall, the results strongly implicate relative direction as the information underlying performance in rhythmic movement coordination tasks.

Wilson, A. D. Collins, D. R. Bingham, G. P. (2005). Human movement coordination implicates relative direction as the information for relative phase [Abstract]. Journal of Vision, 5(8):346, 346a, http://journalofvision.org/5/8/346/, doi:10.1167/5.8.346. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×