June 2006
Volume 6, Issue 6
Free
Vision Sciences Society Annual Meeting Abstract  |   June 2006
A computational theory for the perception of coherent motion: From ideal observer to generic models
Author Affiliations
  • Alan Yuille
    Dept. Statistics
  • Hongjing Lu
    Dept. Psychology
Journal of Vision June 2006, Vol.6, 1083. doi:https://doi.org/10.1167/6.6.1083
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Alan Yuille, Hongjing Lu; A computational theory for the perception of coherent motion: From ideal observer to generic models. Journal of Vision 2006;6(6):1083. https://doi.org/10.1167/6.6.1083.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Motion perception depends on spatial integration of local motion signals, requiring a solution to the correspondence problem created by the ambiguity inherent in matching features between successive frames. We describe a computational theory of how the visual system solves the correspondence problem. We derived a Bayesian ideal observer for detecting coherent motion in random dot kinematograms, where a proportion of dots move coherently and the rest move randomly. We obtained Barlow and Tripathy's classic model as a good approximation to the Bayesian ideal within a certain intermediate range of dot densities. We confirmed previous findings that the ideal observer qualitatively predicts human performance change with increases in dot density, but that the human absolute level of performance is much worse than the ideal.

To account for this discrepancy, we propose that humans use generic, general purpose, models of motion. In particular, we impose a prior constraint favoring slow and smooth motion patterns (consistent with the statistics of motion in the natural world). We found that the slow-and-smooth model not only predicts the qualitative pattern of human performance, but also provides a quantitative fit to the absolute level of performance. Most remarkably, the slow-and-smooth model achieved above 70% accuracy in predicting human perception of random motion stimuli.

Our analysis shows the Bayesian framework allows derivation of the ideal observer for complex visual stimuli. Human performance on psychophysical tasks may be based on generic models with general prior assumptions, as exemplified by the slow-and-smooth model.

Yuille, A. Lu, H. (2006). A computational theory for the perception of coherent motion: From ideal observer to generic models [Abstract]. Journal of Vision, 6(6):1083, 1083a, http://journalofvision.org/6/6/1083/, doi:10.1167/6.6.1083. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×