June 2006
Volume 6, Issue 6
Free
Vision Sciences Society Annual Meeting Abstract  |   June 2006
Narrow-band channels optimally sum a broad band of spatial frequency information
Author Affiliations
  • Christopher P. Taylor
    McMaster University, Department of Psychology, Neuroscience & Behaviour
  • Patrick J. Bennett
    McMaster University, Department of Psychology, Neuroscience & Behaviour, and York University, Centre for Vision Research
  • Allison B. Sekuler
    McMaster University, Department of Psychology, Neuroscience & Behaviour, and York University, Centre for Vision Research
Journal of Vision June 2006, Vol.6, 115. doi:https://doi.org/10.1167/6.6.115
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Christopher P. Taylor, Patrick J. Bennett, Allison B. Sekuler; Narrow-band channels optimally sum a broad band of spatial frequency information. Journal of Vision 2006;6(6):115. https://doi.org/10.1167/6.6.115.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Previous work (Kersten, 1987) suggests that spatial frequency summation in one-dimensional noise patterns is well described by an ideal observer for stimulus bandwidths up to 6 octaves. However, classification image studies have shown that a two-octave wide channel is used to detect such patterns (Levi & Klein, 2005; Taylor et al., 2003). This leads to the puzzle - how does a narrow-band channel produce optimal summation over a broad bandwidth? Here we show that this puzzle can be resolved by assuming: i) stimuli are filtered by a channel whose frequency response approaches, but does not equal, zero; and ii) the dominant noise occurs prior to filtering. With these assumptions, a quantitative model predicts nearly ideal spatial frequency summation across a broad bandwidth. The model also predicts that components in comb-filtered broadband noise - i.e., noise in which every fourth frequency component carries information - should not be summed optimally. We tested this prediction by measuring detection thresholds for regular noise and comb-filtered noise using a 2-IFC task. Stimuli had a center-frequency of 5 cpd and a frequency bandwidth of 0.5–6 octaves. As before, detection thresholds for noise, expressed as r.m.s. contrast, increased with the quarter-root of the number of frequency components, but thresholds for comb-filtered noise increased with the square-root of the number of components. Hence, as predicted, optimal summation breaks down with comb-filtered noise. The results suggest that narrow-band channels may produce optimal summation of broadband noise patterns.

Taylor, C. P. Bennett, P. J. Sekuler, A. B. (2006). Narrow-band channels optimally sum a broad band of spatial frequency information [Abstract]. Journal of Vision, 6(6):115, 115a, http://journalofvision.org/6/6/115/, doi:10.1167/6.6.115. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×