June 2006
Volume 6, Issue 6
Vision Sciences Society Annual Meeting Abstract  |   June 2006
The role of topological boundary relations in active navigation
Author Affiliations
  • Huiying Zhong
    Brown University
  • Marianne C. Harrison
    Brown University
  • William H. Warren
    Brown University
Journal of Vision June 2006, Vol.6, 144. doi:https://doi.org/10.1167/6.6.144
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Huiying Zhong, Marianne C. Harrison, William H. Warren; The role of topological boundary relations in active navigation. Journal of Vision 2006;6(6):144. doi: https://doi.org/10.1167/6.6.144.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

We have found that humans depend heavily on ordinal spatial knowledge and landmarks, rather than metric spatial knowledge, when navigating in a virtual hedge maze (Harrison et al, VSS, 2001, 2002; Zhong et al, VSS 2005, Psychonomics, 2005). A related form of topological structure is provided by boundaries that carve up space into adjacent neighborhoods. Kuipers et al (2003) found that people tend to choose paths that participate in more boundary relations when navigating in grid-like desktop virtual environments. Here we investigate whether knowledge of boundary relations improves the accuracy of shortcuts when walking in a virtual maze. Participants actively walk in the VENLab, an immersive virtual environment (10m x10m) with a head-mounted display (60 deg H x 40 deg V) and a sonic/inertial tracking system (50–70ms latency). In the learning phase, participants freely explore a hedge maze with primary, secondary, and tertiary paths (the boundaries) and are trained to walk from a Home location to each of 10 places successfully. In the testing phase, they walk to place A, the maze is removed, and they are instructed take a shortcut to place B. On control trials, all features of the maze are removed. On probe trials, either (a) primary, (b) primary and secondary, or (c) all three paths remain visible. If participants utilize knowledge of boundary relations, their shortcut accuracy and precision should improve as more paths remain. The results allow us to determine the role of topological boundary relations in active navigation.

Zhong, H. Harrison, M. C. Warren, W. H. (2006). The role of topological boundary relations in active navigation [Abstract]. Journal of Vision, 6(6):144, 144a, http://journalofvision.org/6/6/144/, doi:10.1167/6.6.144. [CrossRef]
 Acknowledgements: Funded by NSF BCS-0214383

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.