June 2006
Volume 6, Issue 6
Free
Vision Sciences Society Annual Meeting Abstract  |   June 2006
Perceptual-motor recalibration of imagined walking
Author Affiliations
  • Benjamin Kunz
    Department of Psychology, University of Utah, USA
  • Sarah H. Creem-Regehr
    Department of Psychology, University of Utah, USA
  • William B. Thompson
    School of Computing, University of Utah, USA
Journal of Vision June 2006, Vol.6, 423. doi:https://doi.org/10.1167/6.6.423
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Benjamin Kunz, Sarah H. Creem-Regehr, William B. Thompson; Perceptual-motor recalibration of imagined walking. Journal of Vision 2006;6(6):423. https://doi.org/10.1167/6.6.423.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Adapting to a mismatch between speed of visual motion and biomechanical walking will change later visually directed locomotion, indicating a recalibration of the link between perception and action (Rieser et al., 1995). We investigated the recalibration effect for imagined walking, a task which has been proposed to be functionally similar to overt locomotion (Decety et al., 1989). In a pre-test, participants were instructed to imagine walking to targets on the floor at 6, 8, and 10 meters, while timing their imagined walking using a stopwatch. Participants then walked on a large platform treadmill for 10 minutes at a constant rate of 1.3 m/sec while viewing visual motion of a computer-rendered hallway projected onto three screens providing approximately 180-degree horizontal field of view. Speed of visual motion was either .5x their biomechanical speed (visually slower) or 2x their biomechanical speed (visually faster). Participants then repeated the imagined walking task in a post-test. A comparison of pre- and post-test imagined walking times revealed results consistent with the recalibration of walked distance seen in overt walking tasks. Post-test versus pre-test times increased about 15% in the visually slower condition and decreased about 15% in the visually faster condition. This evidence of a recalibration effect in the absence of overt action during pre-test and post-test supports the notion of a functional equivalence between overt and imagined actions, but also suggests that a biomechanical response is not necessary for a recalibration of the perception and action coupling.

Kunz, B. Creem-Regehr, S. H. Thompson, W. B. (2006). Perceptual-motor recalibration of imagined walking [Abstract]. Journal of Vision, 6(6):423, 423a, http://journalofvision.org/6/6/423/, doi:10.1167/6.6.423. [CrossRef]
Footnotes
 This work was supported by NSF grant IIS-01-21084.
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×