June 2006
Volume 6, Issue 6
Free
Vision Sciences Society Annual Meeting Abstract  |   June 2006
A recurrent neural network for trans-saccadic spatial updating produces receptive field remapping and suppressed moving hills
Author Affiliations
  • Gerald P. Keith
    Psychology, and Centre for Vision Research
  • Gunnar Blohm
    Centre for Vision Research
  • J. Douglas Crawford
    Psychology, and Centre for Vision Research, and Biology, York University, Toronto, ON, Canada
Journal of Vision June 2006, Vol.6, 500. doi:https://doi.org/10.1167/6.6.500
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Gerald P. Keith, Gunnar Blohm, J. Douglas Crawford; A recurrent neural network for trans-saccadic spatial updating produces receptive field remapping and suppressed moving hills. Journal of Vision 2006;6(6):500. https://doi.org/10.1167/6.6.500.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

It is currently believed that remembered visual target locations are stored in eye frame and updated across eye movements. Neurons in brain areas associated with saccade generation have shown transient receptive field remapping prior to and during saccades. The question remains as to whether these receptive fields spread or jump (Wurtz & Sommer 2005).

We used a simple 3-layer neural network with recurrent connections between units in the hidden layer to examine the temporal dynamics of updating using the full 3-D geometry of eye rotations. We found that the network was able to perform the required updating task, and that it did so by remapping receptive fields of both output and hidden layer units. While the network was trained to generate a hill of activation in the output layer before and after the saccade, no constraint on the behavior of the network during the saccade was made. The network developed a moving hill of activation in the output layer during the saccade, but with suppressed activation magnitudes.

This suppressed moving hill reconciles previously conflicting findings of moving and jumping hills. The mechanisms observed appear to be a viable model for how trans-saccadic spatial updating is done in the brain.

Keith, G. P. Blohm, G. Crawford, J. D. (2006). A recurrent neural network for trans-saccadic spatial updating produces receptive field remapping and suppressed moving hills [Abstract]. Journal of Vision, 6(6):500, 500a, http://journalofvision.org/6/6/500/, doi:10.1167/6.6.500. [CrossRef]
Footnotes
 This work was supported by CIHR (Canada). GPK is supported by an OGS scholarship (CANADA). GB is supported by a Marie Curie fellowship (EU) and by CIHR (Canada). JDC holds a Canada Research Chair.
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×