June 2006
Volume 6, Issue 6
Free
Vision Sciences Society Annual Meeting Abstract  |   June 2006
The effect of the static nonlinearity on the efficient coding of the visual input
Author Affiliations
  • Mohammad S. Dastjerdi
    Center for Complex Syetems & Brain Sciences, Florida Atlantic University
  • Dawei W. Dong
    Center for Complex Syetems & Brain Sciences, Florida Atlantic University
Journal of Vision June 2006, Vol.6, 567. doi:https://doi.org/10.1167/6.6.567
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Mohammad S. Dastjerdi, Dawei W. Dong; The effect of the static nonlinearity on the efficient coding of the visual input. Journal of Vision 2006;6(6):567. https://doi.org/10.1167/6.6.567.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

It is proposed that the early visual system exploits the statistical structures of the visual environment in order to represent the visual input efficiently. In previous studies, it has been shown that the efficient representations of natural images are localized and oriented filters similar to the receptive fields of simple cells in the visual cortex. However, the orientation selective receptive fields do not emerge before visual cortex, and a simple cell receives inputs from both ON and OFF ganglion cells. Because the ON and OFF ganglion cells process visual input in a nonlinear way, one cannot simply study the efficient coding as a linear process. In the current research, the effect of static nonlinearity on the efficient coding of the visual input is investigated. Natural time varying images are preprocessed with a biologically inspired center-surround filter (CSF). Similar to the earlier studies, the efficient representations of the direct CSF output are localized and oriented filters. However, the efficient coding of the rectified CSF output (ON/OFF channels) does not result in those filters. Instead, the filters have center surround structures similar to those of ganglion cells and most of the improvement in efficiency results from the rectification. Furthermore, the efficiency can be improved much more by using a temporal filter similar to the temporal receptive field of lateral geniculate nucleus (LGN) cells. In conclusion, the results suggest that using biologically inspired spatial/temporal filter of retina/LGN with static nonlinearity gives more efficient representation than linear processing.

Dastjerdi, M. S. Dong, D. W. (2006). The effect of the static nonlinearity on the efficient coding of the visual input [Abstract]. Journal of Vision, 6(6):567, 567a, http://journalofvision.org/6/6/567/, doi:10.1167/6.6.567. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×