June 2006
Volume 6, Issue 6
Free
Vision Sciences Society Annual Meeting Abstract  |   June 2006
Computations underlying fine and coarse stereopsis
Author Affiliations
  • Takahiro Doi
    Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Japan
  • Seiji Tanabe
    Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Japan
  • Ichiro Fujita
    Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Japan
Journal of Vision June 2006, Vol.6, 655. doi:https://doi.org/10.1167/6.6.655
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Takahiro Doi, Seiji Tanabe, Ichiro Fujita; Computations underlying fine and coarse stereopsis. Journal of Vision 2006;6(6):655. https://doi.org/10.1167/6.6.655.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

In the early stage of stereo processing, neurons encode the disparity energy of stereo images. These neurons appear to encode the depth of images without a global-match solution to the stereo correspondence problem. In higher processing stages, responses to false matches are attenuated in the ventral pathway, while the disparity-energy signal is passed on to the dorsal pathway. To understand how these two types of depth information contribute to stereopsis, we examined human psychophysical performance in depth discrimination at various binocular disparity levels. Subjects were required to discriminate the depth of a random-dot stereogram that comprises two groups of dots: one with the same contrast between the two eyes, and the other with the opposite contrast. Altering the percentage of dots belonging to each group allowed us to test the computation underlying stereo performance at each disparity level. In trial blocks in which the disparity was large, subjects perceived no depth when the percentage of the two groups was equal, and reversed depth when the opposite-contrast group dominated. In blocks in which the disparity was small, subjects perceived correct depth when the percentage of the two groups was equal, and no depth when the opposite-contrast group dominated. We conclude that the two depth representations contribute to stereopsis in a manner that depends upon the disparity scale demanded by the task. The disparity energy-like representation is used for coarse scale discrimination, while the false-match-attenuated representation is employed for fine depth discrimination.

Doi, T. Tanabe, S. Fujita, I. (2006). Computations underlying fine and coarse stereopsis [Abstract]. Journal of Vision, 6(6):655, 655a, http://journalofvision.org/6/6/655/, doi:10.1167/6.6.655. [CrossRef]
Footnotes
 Supported by grants from the MEXT (17022025) and the Takeda Science Foundation
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×