June 2006
Volume 6, Issue 6
Free
Vision Sciences Society Annual Meeting Abstract  |   June 2006
Cooperative processing of spatially distributed disparity signals in macaque V1
Author Affiliations
  • Jason M. Samonds
    Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
  • Brian Potetz
    Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
  • Tai Sing Lee
    Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
Journal of Vision June 2006, Vol.6, 831. doi:https://doi.org/10.1167/6.6.831
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Jason M. Samonds, Brian Potetz, Tai Sing Lee; Cooperative processing of spatially distributed disparity signals in macaque V1. Journal of Vision 2006;6(6):831. https://doi.org/10.1167/6.6.831.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Although there has been substantial progress in understanding the neurophysiological mechanisms of stereopsis, many questions remain about how the brain solves the correspondence problem. To gain insight into how horizontal disparity signals are spatially integrated and might solve the correspondence problem, we simultaneously recorded from multiple neurons in V1 of awake, alert macaques while displaying dynamic random dot stereograms. Physical distances between neurons ranged from 1 to over 3 mm, and receptive field separation ranged from partially overlapping to 2°. We quantified the functional connectivity among neurons using the correlation coefficient integrated from normalized cross-correlograms for ±25 ms lag times. The functional connectivity between disparity tuned neurons depended on the disparity of the stimulus. The tuning based on functional connectivity was narrower and more robust than predicted by the independent firing rate tuning curves. To determine how disparity estimates might improve over time (i.e., coarse-to-fine), we examined the temporal evolution of disparity tuning. We found that the firing rate-based disparity tuning was initially very broad. The functional connectivity-based disparity tuning emerged shortly after and was much narrower. Functional connectivity continued to strengthen as the firing rate tuning became sharper. Our results suggest that a coarse-to-fine mechanism likely interacts with, and may even arise from, cooperative processing that allows the brain to converge to a correspondence solution.

Samonds, J. M. Potetz, B. Lee, T. S. (2006). Cooperative processing of spatially distributed disparity signals in macaque V1 [Abstract]. Journal of Vision, 6(6):831, 831a, http://journalofvision.org/6/6/831/, doi:10.1167/6.6.831. [CrossRef]
Footnotes
 Supported by NIMH IBSC MH64445 and NSF CISE IIS-0413211 grants
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×