June 2007
Volume 7, Issue 9
Vision Sciences Society Annual Meeting Abstract  |   June 2007
Control of sensorimotor variability
Author Affiliations
  • Laurent Madelain
    Laboratoire Ureca, Université Ch. De Gaulle Lille III, France
  • Lucie Champrenaut
    Laboratoire Ureca, Université Ch. De Gaulle Lille III, France
  • Alan Chauvin
    Laboratoire Ureca, Université Ch. De Gaulle Lille III, France
Journal of Vision June 2007, Vol.7, 32. doi:https://doi.org/10.1167/7.9.32
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Laurent Madelain, Lucie Champrenaut, Alan Chauvin; Control of sensorimotor variability. Journal of Vision 2007;7(9):32. doi: https://doi.org/10.1167/7.9.32.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

PURPOSE. Studies of reaction time distributions provide a useful quantitative approach to understand decision processes at the neural level and at the behavioral level. A strong relationship between the spread of latencies and the median is generally accepted even though there has been no attempt to disentangle experimentally these two parameters. Here we test the ability to independently control the median and the variability in reaction times. METHODS. Reaction times were measured in human subjects instructed to make a discrimination between a target and a distractor in a 2AFC task. In a first experiment, saccadic latencies were measured. In a second experiment, we used manual response reaction times. In each experiment subjects were trained to produce four different reaction time distributions. A reinforcing feedback was given depending on both the variability and the median of the latency distributions. RESULTS. When low variability was reinforced the standard deviation of reaction time distributions were reduced by a factor of two and when high variability was reinforced, the standard deviation returned to baseline level. Our procedure independently affected the spread and the median of the distribution patterns. By fitting the latency distributions using the Reddi and Carpenter LATER model, we found that these effects could be simulated by changing the distribution of the noise affecting the decision process. Our results demonstrate that learned contingencies can affect reaction time variability and support the view that the so-called noise level in decision processes can undergo long-term changes.

Madelain, L. Champrenaut, L. Chauvin, A. (2007). Control of sensorimotor variability [Abstract]. Journal of Vision, 7(9):32, 32a, http://journalofvision.org/7/9/32/, doi:10.1167/7.9.32. [CrossRef]

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.