December 2007
Volume 7, Issue 15
Free
OSA Fall Vision Meeting Abstract  |   December 2007
The Statistical Properties of Images as Determinants of Ganglion Cell Activity in the Vertebrate Retina
Author Affiliations
  • Jennifer Krishnaswamy
    Dept. of Molecular & Cell Biology, University of California
  • W. Geoffrey Owen
    Dept. of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California at Berkeley
Journal of Vision December 2007, Vol.7, 76. doi:https://doi.org/10.1167/7.15.76
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Jennifer Krishnaswamy, W. Geoffrey Owen; The Statistical Properties of Images as Determinants of Ganglion Cell Activity in the Vertebrate Retina. Journal of Vision 2007;7(15):76. https://doi.org/10.1167/7.15.76.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

It is a reasonable hypothesis that vertebrate retinae, having evolved in natural environments, are optimized to recognize and report spatial correlations in natural scenes, which have spatial amplitude spectra roughly proportional to 1/k. Assuming that the activity of retinal ganglion cells reflects the amount of information they report about the image, we hypothesized that ganglion cell responses elicited by natural phase spectra images with spatial amplitude spectra proportional to 1/k^n, where n is variable, should be maximally robust when n = 1. To test this, we recorded action potentials from salamander retinal ganglion cells and explored the effects of changing the amplitude spectrum and/or phase spectrum of images that evoked them. With stationary stimuli having random phase, a natural amplitude spectrum (n = 1) evoked more spikes from ganglion cells than an “unnatural” one. With moving images, a natural phase spectrum elicited more spikes than a random phase spectrum. We found that moving images having natural phase spectra evoked more spikes when their amplitude spectra were natural (n = 1) than when they were unnatural. These findings support our hypothesis that the retina is optimized to recognize and report the spatial correlations in natural scenes.

Krishnaswamy, J. Owen, W. G. (2007). The Statistical Properties of Images as Determinants of Ganglion Cell Activity in the Vertebrate Retina [Abstract]. Journal of Vision, 7(15):76, 76a, http://journalofvision.org/7/15/76/, doi:10.1167/7.15.76. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×