December 2008
Volume 8, Issue 17
OSA Fall Vision Meeting Abstract  |   December 2008
Cortical under-sampling and crowding
Author Affiliations
  • Albert Ahumada
    NASA Ames Research Center, Moffett Field, CA, USA
Journal of Vision December 2008, Vol.8, 41. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Albert Ahumada; Cortical under-sampling and crowding. Journal of Vision 2008;8(17):41. doi:

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Crowding effects in the periphery have been the focus of many recent studies (Pelli, Cavanagh, Desimone, Tjan, and Treisman, 2007). Perhaps cortical under-sampling contributes strongly to this effect, and crowding is in part an aliasing effect. Optical aliasing can occur in the periphery because the optics pass higher frequencies than the cone array Nyquist frequency (Smith and Cass, 1987). It is also known while the central fovea has about 2 ganglion cells per cone, that even in the near periphery there are increasingly fewer ganglion cells than cones, and that some have small receptive fields (Henrickson, 2004). It appears that the situation is even worse at the cortical level. Tabernero and Ahumada (1992) found that when the cortical representation under-samples the visual signal, a translation-invariance learning process cannot work, leaving the peripheral representations location specific. As a first look at the possible consequences of cortical under-sampling, a version of the Cortex Transform (Watson, 1987) was used to represent letter images. This transform has the convenient, but perhaps unrealistic, property that the post-sampling reconstruction can be done by filtering the channels with their same filters and then adding them back together. Under-sampling was done with random deletion of the transform coefficients. The reconstructed under-sampled letters appear in a halo of noise. However, when the letters are placed close together so the noise halos overlap the letters, there is no striking masking effect. Perhaps strong peripheral inhibitory processes (Xing and Heeger, 2000) are needed to remove the noise, resulting in crowding effects.

Ahumada, A. (2008). Cortical under-sampling and crowding [Abstract]. Journal of Vision, 8(17):41, 41a,, doi:10.1167/8.17.41. [CrossRef]

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.