August 2009
Volume 9, Issue 8
Vision Sciences Society Annual Meeting Abstract  |   August 2009
Early correction model of human goal-directed movement
Author Affiliations
  • Oh-Sang Kwon
    Department of Psychological Sciences, College of Liberal Art, Purdue University
  • Jeffrey Shelton
    School of Mechanical Engineering, College of Engineering, Purdue University
  • Zygmunt Pizlo
    Department of Psychological Sciences, College of Liberal Art, Purdue University
Journal of Vision August 2009, Vol.9, 1155. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Oh-Sang Kwon, Jeffrey Shelton, Zygmunt Pizlo; Early correction model of human goal-directed movement. Journal of Vision 2009;9(8):1155.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

In VSS2008 we presented the intermittent feedback model of goal-directed forearm movement. In the model a goal-directed movement consists of two submovements, with the trajectory of each submovement being individually optimized. Simulations using the model showed that the optimal transition between two submovements occurs at an early stage of the movement, and produces a sharp increase in the acceleration profile in agreement with the preliminary psychophysical data.

In the present study, we directly measured the acceleration profiles of goal-directed movement using accelerometer to avoid the large noise caused by successive differentiations. The new data allows us to examine the patterns of individual trials in addition to verifying the previous findings. Analysis of individual trials show that the time of peak acceleration is relatively constant across the trials, and the amplitude of this peak systematically affects the shape of the acceleration profile during the later stages of the movement. These profiles are very similar to those produced by the model. All these results confirm the model's prediction that humans apply early correction just after the initiation of the goal-directed movement. Finally, we tested our model in various distance and accuracy conditions. We found that the simulated movement durations across conditions are consistent with Fitts' law.

Kwon, O.-S. Shelton, J. Pizlo, Z. (2009). Early correction model of human goal-directed movement [Abstract]. Journal of Vision, 9(8):1155, 1155a,, doi:10.1167/9.8.1155. [CrossRef]

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.