Abstract
Real-world perception is typically trans-saccadic: we see the same object across multiple fixations. Yet saccadic eye movements can dramatically change the location in which an object is projected onto the retina. In a series of experiments using eye tracking, psychophysics, neuroimaging and TMS, we have investigated how information from a previous fixation can influence perception in the subsequent fixation. Specifically, we have tested the idea that the “remapping” of receptive fields around the time of saccadic eye movements might play a role in trans-saccadic perception. Our results suggest that two mechanisms interact to produce “object-otopic” perception across saccades. First, a limited number of objects that are individuated in a scene (treated as unique objects potentially subject to action, as opposed to being part of the background gist) are represented and updated across saccades in a sensorimotor “saliency map” (possibly in posterior parietal cortex). Second, the updating of these “pointers” in the map leads to the remapping of receptive fields in intermediate visual areas. We have found that perception can be retinotopic, spatiotopic or even-in the case of moving objects-can involve the combination of information for the same object that is neither retinally or spatially matched. At the same time, however, the visual system must give priority to the retinal information, which tends to be most reliable during fixation of stable objects.