August 2009
Volume 9, Issue 8
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2009
Dividing attention between two simultaneous visual tasks I: The Parvocellular system & the Koniocellular system
Author Affiliations
  • Satomi Maeda
    Department of Psychology, College of Science of Math, Wright State University
  • Allen Nagy
    Department of Psychology, College of Science of Math, Wright State University
  • Scott Watamaniuk
    Department of Psychology, College of Science of Math, Wright State University
Journal of Vision August 2009, Vol.9, 210. doi:https://doi.org/10.1167/9.8.210
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Satomi Maeda, Allen Nagy, Scott Watamaniuk; Dividing attention between two simultaneous visual tasks I: The Parvocellular system & the Koniocellular system. Journal of Vision 2009;9(8):210. https://doi.org/10.1167/9.8.210.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Previous research has shown that attending to two simultaneous visual tasks results in varying degrees of interference depending on the nature of the two tasks. One model postulates that different feature-coding mechanisms are equipped with independent finite pools of attentional resources (Morrone, Denti, & Spinelli, 2004). The present study extends our previous research (Maeda & Nagy, 2008 VSS) and tests the hypothesis that the parvocellular and the koniocellular pathways in the lateral geniculate nucleus tap independent pools of attentional resources. Observers searched simultaneously for a target in each of two spatially separated arrays of stimuli that were presented briefly. Targets that resulted in 75% correct performance for each array in single-task conditions were then used in the dual-task conditions. Based on the independent resource pool hypothesis, we predicted that searching for two targets that are coded by the feature-coding mechanisms within one pathway (within-pathway condition) would lead to more dual-task interference than searching for two targets that are coded by feature-coding mechanisms in two different pathways (between-pathway condition). Results yielded varying degrees of dual-task interference depending on the task combinations (i.e. within- or between pathways, target-distractor relationship and target appearance). Between-pathways task pairs generally resulted in very little interference (88% of single-task performance). Some within-pathway task pairs also resulted in very little dual-task interference (92 % of single-task performance), while other within-pathway task pairs produced substantial interference (69 % of single-task performance). Overall, results generally did not support the independent resource pool hypothesis. Results will be discussed further in terms of a multiple-resource model (Navon & Gopher, 1979), a shared resource sampling model (Miller & Bonnel, 1992), and a switching competition model (Duncan, 1980) of divided attention.

Maeda, S. Nagy, A. Watamaniuk, S. (2009). Dividing attention between two simultaneous visual tasks I: The Parvocellular system & the Koniocellular system [Abstract]. Journal of Vision, 9(8):210, 210a, http://journalofvision.org/9/8/210/, doi:10.1167/9.8.210. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×