August 2009
Volume 9, Issue 8
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2009
Estimating Critical Stimulus Features from Psychophysical Data: The Decision-Image Technique Applied to Human Faces
Author Affiliations
  • Jakob H. Macke
    Max-Planck-Institut für biologische Kybernetik, Tübingen
  • Felix A. Wichmann
    Technische Universität Berlin & Bernstein Center for Computational Neuroscience Berlin, Germany
Journal of Vision August 2009, Vol.9, 31. doi:https://doi.org/10.1167/9.8.31
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Jakob H. Macke, Felix A. Wichmann; Estimating Critical Stimulus Features from Psychophysical Data: The Decision-Image Technique Applied to Human Faces. Journal of Vision 2009;9(8):31. https://doi.org/10.1167/9.8.31.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

One of the main challenges in the sensory sciences is to identify the stimulus features on which the sensory systems base their computations: they are a pre-requisite for computational models of perception. We describe a technique—decision-images— for extracting critical stimulus features based on logistic regression. Rather than embedding the stimuli in noise, as is done in classification image analysis, we want to infer the important features directly from physically heterogeneous stimuli. A Decision-image not only defines the critical region-of-interest within a stimulus but is a quantitative template which defines a direction in stimulus space. Decision-images thus enable the development of predictive models, as well as the generation of optimized stimuli for subsequent psychophysical investigations. Here we describe our method and apply it to data from a human face discrimination experiment. We show that decision-images are able to predict human responses not only in terms of overall percent correct but are able to predict, for individual observers, the probabilities with which individual faces are (mis-) classified. We then test the predictions of the models using optimized stimuli. Finally, we discuss possible generalizations of the approach and its relationships with other models.

Macke, J. H. Wichmann, F. A. (2009). Estimating Critical Stimulus Features from Psychophysical Data: The Decision-Image Technique Applied to Human Faces [Abstract]. Journal of Vision, 9(8):31, 31a, http://journalofvision.org/9/8/31/, doi:10.1167/9.8.31. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×