August 2009
Volume 9, Issue 8
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2009
A model of optimal oculomotor strategies in reading for normal and damaged visual fields
Author Affiliations
  • Jean-Baptiste Bernard
    Institut de Neurosciences Cognitives de la Méditerranée - Université Aix-Marseille II & CNRS - Marseille, France
  • Fermin Moscoso Del Prado
    Laboratoire de Psychologie Cognitive - Université Aix-Marseille I & CNRS - Marseille, France
  • Anna Montagnini
    Institut de Neurosciences Cognitives de la Méditerranée - Université Aix-Marseille II & CNRS - Marseille, France
  • Eric Castet
    Institut de Neurosciences Cognitives de la Méditerranée - Université Aix-Marseille II & CNRS - Marseille, France
Journal of Vision August 2009, Vol.9, 824. doi:https://doi.org/10.1167/9.8.824
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Jean-Baptiste Bernard, Fermin Moscoso Del Prado, Anna Montagnini, Eric Castet; A model of optimal oculomotor strategies in reading for normal and damaged visual fields. Journal of Vision 2009;9(8):824. https://doi.org/10.1167/9.8.824.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Normally-sighted subjects typically read words by placing the maximal acuity zone of their retina (i.e. the fovea) directly on the word. In contrast, patients with macular lesions (i.e. central scotomata) need to place the fovea outside the word itself, thus using peripheral areas of the retina to read. It is assumed that patients preferentially use a particular peripheral zone called the Preferred Retinal Location (PRL). The correlation between this PRL and reading performance is still controversial, giving rise to several studies with both patients and simulated subjects.

In this study, we present a bayesian “ideal observer” analysis of single-word reading in normal readers and central scotoma patients. In the latter case, numerous fixations can be necessary before recognition occurs. Our approach to reading assumes that the optimal reading strategy is the one that optimizes the “Expected Information Gain” for each future fixation. This gain is calculated on the basis of the image pixel values and takes into account the information provided by pixels about letter and word identities. Importantly, the model predicts the 2D spatio-temporal pattern of saccades during reading by using only pixel-based information, in contrast with theories that use the pre-processed letter-slot approaches to model reading.

The implementation of the model shows that vertical strategies (i.e., placing scotoma above or below the word) are optimal for word reading. We found a similar pattern of results in a word recognition experiment where macular blindness was simulated with a gaze-contingent paradigm in normally-sighted observers. More generally, our results support the idea that information processing models can help define optimal oculomotor strategies and provide important insights for visuo-motor rehabilitation methods.

Bernard, J. -B. Moscoso Del Prado, F. Montagnini, A. Castet, E. (2009). A model of optimal oculomotor strategies in reading for normal and damaged visual fields [Abstract]. Journal of Vision, 9(8):824, 824a, http://journalofvision.org/9/8/824/, doi:10.1167/9.8.824. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×