May 2008
Volume 8, Issue 6
Free
Vision Sciences Society Annual Meeting Abstract  |   May 2008
Low-level fixation search in natural scenes by optimal extraction of texture-contrast information
Author Affiliations
  • Raghu Raj
    Center for Perceptual Systems, and Department of Electrical and Computer Engineering
  • Alan Bovik
    Center for Perceptual Systems, and Department of Electrical and Computer Engineering
  • Lawrence Cormack
    Center for Perceptual Systems, and Department of Psychology
Journal of Vision May 2008, Vol.8, 110. doi:https://doi.org/10.1167/8.6.110
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Raghu Raj, Alan Bovik, Lawrence Cormack; Low-level fixation search in natural scenes by optimal extraction of texture-contrast information. Journal of Vision 2008;8(6):110. https://doi.org/10.1167/8.6.110.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

We construct the beginnings of a low-level theory of visual fixations in natural scenes by the formulation and verification a Barlow-type hypothesis for fixation selection—where the fixation patterns are designed to maximally contrast and textural information. We first briefly overview optimum contrast-based fixation strategies in natural scenes [1] and thereafter develop an optimum texture-based fixation selection algorithm based on our computational theory of non-stationarity measurement in natural images. In particular it is shown how a simple relative coding error measure between sub-patches of a window (that defines the image scale of analysis) can effectively measure the non-stationary structure of natural scenes which subsequently can be employed for the optimal extraction of textural information. Finally we propose a simple coupling of the optimal texture-based and contrast-based fixation algorithms which exhibits robust performance for fixation selection in natural images. The performance of the fixation algorithms are evaluated for natural images by comparison to actual human fixations performed on the images. The fixation patterns thus obtained outperform randomized, Gaffe-based [2], and Itti [3] fixation strategies in terms of matching human fixation patterns in terms of mutual information. These results also demonstrate the important role that contrast and textural information play in low-level visual processes in the HVS.

[1] Raj, R. G., Geisler, W. S., Frazor, R. A., & Bovik, A. C. (Oct 2005). "Contrast statistics for foveated visual systems: Fixation selection by minimizing contrast entropy," J. Opt Soc Amer A, vol. 22, pp. 2039-2049.

[2] Rajashekar, U., van der Linde, I., Bovik, A. C., & Cormack, L. K. (2008). "GAFFE: A gaze-attentive fixation finding engine," IEEE Trans Image Processing, to appear.

[3] Itti, L., & Koch, C. (May 2000.). A saliency-based search mechanism for overt and covert shifts of visual attention, Vision Res, vol. 40, no. 10-12, pp. 1489-1506.

Raj, R. Bovik, A. Cormack, L. (2008). Low-level fixation search in natural scenes by optimal extraction of texture-contrast information [Abstract]. Journal of Vision, 8(6):110, 110a, http://journalofvision.org/8/6/110/, doi:10.1167/8.6.110. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×