May 2008
Volume 8, Issue 6
Free
Vision Sciences Society Annual Meeting Abstract  |   May 2008
Position discrimination of auditory stimuli in early visual cortex
Author Affiliations
  • Santani Teng
    Center for Mind and Brain, University of California, Davis, and Dept. of Psychology, University of California, Davis
  • David Whitney
    Center for Mind and Brain, University of California, Davis, and Dept. of Psychology, University of California, Davis
Journal of Vision May 2008, Vol.8, 166. doi:https://doi.org/10.1167/8.6.166
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Santani Teng, David Whitney; Position discrimination of auditory stimuli in early visual cortex. Journal of Vision 2008;8(6):166. https://doi.org/10.1167/8.6.166.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

The traditionally accepted unimodal nature of primary visual cortex has been challenged by functional and anatomical evidence of early visual neurons receiving nonvisual input in cats (auditory: Morrell, 1972; Fishman and Michael, 1973), primates (auditory: Falchier et al., 2002), and blind (tactile: Sadato et al., 1996; Cohen et al., 1997; auditory: Gougoux et al., 2005) and sighted (tactile: Zangaladze et al., 1999; Merabet et al., 2004) humans. The present study measured the precision of auditory spatial coding in early visual cortex. In an fMRI experiment, subjects performed a 5AFC spatial discrimination task in which they were presented with spatially specific auditory stimuli in 5 locations across a range of 20 degrees in the frontal plane. The task was to indicate via button press the apparent location of each stimulus. We found that early visual cortex (V1/V2) as well as occipito-parietal regions (cuneus/precuneus) contained regions that discriminated between the spatial locations of the stimuli, i.e., spatially closer stimuli elicited more highly correlated activity than did more separated stimuli. Importantly, these regions often exhibited greater selectivity for the perceived, rather than physical, stimulus position, as calculated from incorrect responses. These results suggest that top-down connections to early visual areas carry spatial information from higher-order auditory cortical areas.

Teng, S. Whitney, D. (2008). Position discrimination of auditory stimuli in early visual cortex [Abstract]. Journal of Vision, 8(6):166, 166a, http://journalofvision.org/8/6/166/, doi:10.1167/8.6.166. [CrossRef]
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×