May 2008
Volume 8, Issue 6
Vision Sciences Society Annual Meeting Abstract  |   May 2008
A cortical and a sub-cortical origin of lateral interactions in perceived temporal variation
Author Affiliations
  • Anthony D'Antona
    Department of Psychology, University of Chicago
  • Jan Kremers
    Department of Ophthalmology, University Hospital Erlangen
  • Steven Shevell
    Department of Psychology, University of Chicago, and Department of Ophthalmology and Visual Science, University of Chicago
Journal of Vision May 2008, Vol.8, 358. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Anthony D'Antona, Jan Kremers, Steven Shevell; A cortical and a sub-cortical origin of lateral interactions in perceived temporal variation. Journal of Vision 2008;8(6):358. doi:

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

PURPOSE: Perception of a temporally-varying light is strongly affected by temporal variation within a surrounding field. The neural mechanism mediating this perceived lateral interaction has been posited to be center-surround antagonism in the LGN (Kremers et al., 2004) or at a cortical level (D'Antona & Shevell, 2007). To determine the neural locus, this study examined the contribution of monocular and/or binocular components to lateral interactions mediating perceived temporal variation. METHODS: Observers haploscopically viewed a central test stimulus (1 deg diam) with luminance varying over time. This stimulus had a surround (6 deg diam) that also varied in luminance at the same frequency. Center and surround were separated by a thin dark gap (0.2 deg). The center and surrounding stimuli were either presented to the same eye (monocular condition) or to opposite eyes (dichoptic condition). The central test stimulus always had Michelson contrast 0.5; the surround's contrast could be either 0.25 or 0.5. Stimuli were presented at 3.125, 6.25, or 12.5 Hz. The relative phase between the center and surround was varied in each condition. Observers adjusted the modulation depth of a separate temporally-varying matching field to match the perceived modulation depth in the central test area. RESULTS&CONCLUSIONS: Perceived modulation depth depended strongly on the relative phase between the center and surround in both the monocular and dichoptic conditions. The monocular conditions showed a somewhat larger influence from the surround compared to the dichoptic conditions. The results revealed both a weak monocular (plausibly LGN) and large binocular (central) component of lateral interaction. The monocular component was relatively flat as a function of temporal frequency, while the binocular component showed low-pass temporal-frequency tuning. These findings are consistent with two separate neural sites (monocular and binocular) underlying perceived temporal variation in context, with each site having a distinct strength and temporal-frequency tuning.

D'Antona, A. Kremers, J. Shevell, S. (2008). A cortical and a sub-cortical origin of lateral interactions in perceived temporal variation [Abstract]. Journal of Vision, 8(6):358, 358a,, doi:10.1167/8.6.358. [CrossRef]
 Supported by NIH grant EY-04802 and an unrestricted grant to the Department of Ophthalmology & Visual Science from Research to Prevent Blindness.

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.