May 2008
Volume 8, Issue 6
Vision Sciences Society Annual Meeting Abstract  |   May 2008
Biological motion perception: Walker distance does not matter
Author Affiliations
  • Isabelle Legault
    Visual Psychophysics and Perception Laboratory, Universite de Montreal
  • Jocelyn Faubert
    Visual Psychophysics and Perception Laboratory, Universite de Montreal
Journal of Vision May 2008, Vol.8, 905. doi:10.1167/8.6.905
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Isabelle Legault, Jocelyn Faubert; Biological motion perception: Walker distance does not matter. Journal of Vision 2008;8(6):905. doi: 10.1167/8.6.905.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Human ability to perceive biological motion pattern is well established. Furthermore, it has been shown that observers' performances for detecting biological motion patterns in noise are worse when the walker pattern is inverted. The purpose of the present study was to determine if there is a difference between performances when biological motion patterns, in an upright and inverted orientation, are disposed at different distances in virtual space. To create our setup, we used a full immersive virtual reality environment (CAVE), giving the observers the experience of stereoscopic vision. We used a biological motion pattern composed of 13 dots, walking left or right on a treadmill. The size of the walker was 1.80 meters disposed at a virtual distance from the observer of 4, 8 and 16 meters subtending 24, 12 and 6 degrees of visual angle respectively. Using a staircase procedure, the observer's task was to identify the walker's direction (left or right) in upright and inverted conditions. The walker was presented in a scrambled mask, where the noise dot density was increased with two successive correct answers. The scrambled mask was generated by randomly selecting dots with biological motion patterns and repositioning them in 3D space. The results showed that distance does not influence performance. In other words, biological motion detection in noise, in upright and inverted conditions, does not depend on how far the walker is positioned in 3D space.

Legault, I. Faubert, J. (2008). Biological motion perception: Walker distance does not matter [Abstract]. Journal of Vision, 8(6):905, 905a,, doi:10.1167/8.6.905. [CrossRef]
 NSERC, NSERC-Essilor Research Chair and CIHR.

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.