August 2010
Volume 10, Issue 7
Vision Sciences Society Annual Meeting Abstract  |   August 2010
Perisaccadic Stereopsis from Zero Retinal Disparity
Author Affiliations
  • Zhi-Lei Zhang
    School of Optometry, University of California at Berkeley
  • Christopher Cantor
    School of Optometry, University of California at Berkeley
  • Clifton Schor
    School of Optometry, University of California at Berkeley
Journal of Vision August 2010, Vol.10, 331. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Zhi-Lei Zhang, Christopher Cantor, Clifton Schor; Perisaccadic Stereopsis from Zero Retinal Disparity. Journal of Vision 2010;10(7):331. doi:

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

A stimulus flashed immediately before a saccade is perceived as mislocalized in the direction of the eye movement. This perisaccadic-positional shift varies with the time from the flash to the saccade onset (TSO:). We have shown that this shift is also strongly affected by the stimulus luminance for a single flash: the shift is larger with low than high luminance. We also found an interaction between flashes presented asynchronously to the same eye in which a flash with a longer TSO is shifted more than a second flash with a shorter TSO. The results suggest a low-level mechanism in which the visual system combines eye position information with a persistent neural representation of the retinal image (temporal impulse response) to estimate the visual direction during saccadic eye movements. These results also provided the foundation for studies of a head-centric disparity mechanism in which asynchronous dichoptic foveal flashes presented before a saccade produced different amounts of perisaccadic shift in each eye and resulted in the depth percept from the head-centric disparity of the zero retinal disparity stimulus. This head-centric disparity also cancelled a retinal disparity of opposite sign, illustrating an interaction between the retinal and headcentric disparity estimates. This is the first experimental evidence that demonstrates a head-centric disparity mechanism for stereopsis in human.

Zhang, Z.-L. Cantor, C. Schor, C. (2010). Perisaccadic Stereopsis from Zero Retinal Disparity [Abstract]. Journal of Vision, 10(7):331, 331a,, doi:10.1167/10.7.331. [CrossRef]

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.